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Abstract 
Accurate estimation of chlorophyll (Chl) content is highly significant in monitoring potato growth and improving 
yield and quality. Fractional differentiation can refine the local information of the spectrum and is conducive to the 
removal of background noise. In this study, a new method to examine the effects of fractional differentiation on the 
estimation of the Chl content of crops was developed. Potato (Solanum tuberosum L.) was selected as the research 
object. A fractional derivative was used for unmanned aerial vehicle (UAV) hyperspectral data processing, and an 
algorithm for estimating the potato Chl content was studied. 
The results concluded that the correlation increased after first declining with increasing differential order; the 
maximum absolute values of the correlation coefficient at different stages were obtained with 1-order differentiation 
at the budding stage, 0.6-order differentiation during the tuber formation and tuber growth stages and 1.2-order 
differentiation at the starch accumulation stage. The comparison and analysis of the estimation models of the potato 
Chl content at different growth stages showed that the support vector machine (SVM) model had the greatest 
accuracy in estimating the potato Chl content with an R2 value of 0.83 at the budding stage, followed by R2 of 0.80 
at the tuber forming stage. 

Key words: chlorophyll content, fractional differentiation, UAV hyperspectrum, Solanum tuberosum. 

Introduction 
Potatoes are hardy, drought tolerant and barren 

soil resistant. They are easily planted in both southern 
and northern China and can meet the self-sufficiency 
requirements of food crops in the future. To ensure global 
food security, China’s government launched the Potato 
Staple Food Project. In 2016, the Ministry of Agriculture 
published the “Guidance on promoting the development 
of the potato industry”; therefore, large-scale cultivation 
of potato as a staple food in China is inevitable. The real-
time monitoring of the nutritional status of potato crops 
promotes informed and efficient planting and fertilisation 
strategies that promote high yields and maximise 
productivity. 

Chlorophyll (Chl) is an important pigment for 
the light energy utilisation of crops that directly affects 
the energy and material conversion and transmission 
process of crops. Changes in the Chl content (C) 
directly represent the photosynthetic capacity, growth 
and nutritional state of crops (Gonzalez-Dugo et al., 
2015; Sonobe et al., 2021). Moreover, ChlC and growth 
conditions of potatoes are highly correlated, and Chl is an 
important index for measuring potato nutritional status 
(Tilahun et al., 2020). The rapid and accurate monitoring 

of ChlC is highly significant in the monitoring of the 
photosynthetic capacity and growth status of potatoes, and 
guides the improvement and optimization of potato yield 
and quality (Liu et al., 2020). The traditional methods 
of ChlC monitoring are indoor high-performance liquid 
chromatography, atomic absorption spectrometry and 
spectrophotometry. These methods can accurately measure 
ChlC but are destructive, unrecoverable and cumbersome 
with large workloads and other shortcomings and cannot 
achieve real-time large-scale regional monitoring. 

Hyperspectral remote sensing technology has a 
high spectral resolution and strong band continuity, which 
are major achievements in the field of earth observation 
and are at the frontier of remote sensing science and 
technology. Because the sunlight absorption and 
reflection characteristics of Chl in crops form a unique 
spectral curve, rapid and non-destructive high throughput 
monitoring of ChlC in crops is possible by analysing 
the hyperspectral characteristics of crops (Li et al., 
2020). Unmanned aerial vehicle (UAV) remote sensing 
technology is fast and high throughput, with low costs, 
high ease of operation and high resolution. Furthermore, 
UAV remote sensing has the additional advantage of 
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being suitable for regional research. Therefore, this 
paper researches the estimation of potato ChlC using a 
UAV platform equipped with a hyperspectral camera to 
provide a scheme for monitoring potato ChlC. 

At present, domestic and foreign scholars 
have made some achievements in estimating the ChlC 
of crops based on spectral information. Li et al. (2019) 
estimated the ChlC of winter wheat using a multivariate 
regression model. Singh et al. (2017) estimated the ChlC 
of sorghum by using the reflectance composition ratio 
model at bands of 595, 1676, 595 and 508 nm. Roosjen 
et al. (2017) determined ChlC at different growth stages 
of potato by using UAV remote sensing data. Liang 
et al. (2016) used the correlation between the spectral 
reflectivity and ChlC of apple trees to select sensitive 
bands and then used multivariate linear regression, 
neural networks and a principal component analysis 
(PCA) method to estimate ChlC. 

Piegari et al. (2021) took Sporobolus densiflorus 
as the research object and studied the estimation of leaf 
area index (LAI) and Chl content using hyperspectral data 
(HD) coupled with PROSAIL model. Malin Hoeppner 
et al. (2020), Zhu et al. (2020) and El-Hendawy et al. 
(2021) used hyperspectral reflectance to construct 
vegetation index, analysed the relationship between it 
and canopy Chl content and established an estimation 
model for Chl content of crops and trees. An et al. (2020) 
and Yamashita et al. (2020) used the reflectivity of HD 
and machine learning algorithm to build the estimation 
model of leaf green content of tea and rice. 

Most of the existing studies on the estimation of 
ChlC using hyperspectral remote sensing technology are 
based on the relationship between the original spectral 
characteristics and the ChlC of crops or use the original 
spectral information to construct a correlation index, 
analyse the relationship between the original spectral 
characteristics and the ChlC of crops, and construct an 
estimation model of the ChlC of crops (Cordon et al., 
2016; Croft et al., 2020; Guo et al., 2020; Morley et al., 
2020; Qiao et al., 2020; Zhang et al., 2020; Zhou et al., 
2020). Spectral differentiation techniques can partially 
eliminate the influence of atmospheric effects, vegetation 
shadows and soil and reflect the essential characteristics 
of vegetation (Afshari et al., 2020). 

In recent years, increasing attention has been 
paid to the use of spectral differential technology to 
monitor the growth of crops, and some research results 
on this subject have been obtained. Xu et al. (2019) and 
Bahrami and Mobasheri (2020) used remote sensing 
data to carry out 1-order, 2-order and 3-order differential 
processing on the original data and combined with time 
series normalized difference vegetation index (NDVI) 
to realize the identification of the dominant tree species 
in the forest. Liu et al. (2019) used hyperspectral 1-
order differential technology to monitor maize leaf spot 
disease and achieved good results. He et al. (2016) and 
Yang et al. (2020) analysed the correlation between the 
different order spectral differential indices and nitrogen 
(N) content of crop and selected the spectral differential 
indices with strong correlation to build the N content 
estimation model, which achieved good results. Pereira 
da Conceição et al. (2020) successfully identified two 
mycotoxicogenic Fusarium species associated with 
maize based on hyperspectral differentiation technology. 
Basinger et al. (2020) used HD to analyse the effect of 
phenology on the differentiation of crop and weed species 
through differential processing. 

Fractional-order differentiation can refine 
spectral information, make full use of information easily 
ignored by integer order differentiation, effectively remove 
image background noise and deeply explore potential 
information in the spectrum (Cardone, Conte, 2020; Ali 
et al., 2021). In recent years, fractional differentiation 

has been widely studied and applied in many fields. Lin 
et al. (2019) used HD to perform fractional differential 
processing to build a model to estimate the metal zinc 
content in the soil. Through analysing the spectral 
characteristics of differential of different orders, Zhu 
et al. (2019) obtained the most appropriate differential 
orders of Co2 + and Cu2 + respectively based on the 
multi-objective particle swarm optimization algorithm. 
Zhang et al. (2016) and Wang et al. (2017) discussed the 
possibility of using fractional differential technology to 
estimate soil heavy metal chromium and salt content in 
HD. The results show that the accuracy and robustness 
of the model after fractional pre-processing is better 
than integer order. The differential has been greatly 
improved. However, there are still relatively few studies 
on fractional-order differential technology in the field of 
crop nutrition monitoring. 

To verify the effectiveness of fractional 
differentiation in the hyperspectral estimation of crop 
ChlC, a new technical method was developed. In this 
paper, a fractional-order differential algorithm for 
spectral data processing and carries out the estimation 
research of potato ChlC was introduced. To obtain 11 
types of fractional differentiation spectral data of the 
canopy at each growth stage, the spectral data of the layer 
height of the potato canopy in the 454–950 nm band by 
differential processing of order 0–2 (0.2-order interval) 
were treated. 

Through Pearson correlation analysis, fractional 
differential spectra with an excellent correlation between 
the growth stages and potato ChlC were selected, and 
the correlation coefficients between these spectra and 
potato ChlC were calculated. Different differential bands 
were optimized, and a multiple linear regression (MLR), 
support vector machine (SVM) and random forest 
(RF) models of the potato ChlC based on the fractional 
differential spectra were established. The accuracy of the 
models was verified, and the optimal estimation model 
was selected. 

Materials and methods
Study area and test design. The National 

Precision Agriculture Research and Demonstration Base 
of Xiaotangshan, Changping district, Beijing, China 
was selected as the research area (Figure 1). This area 
is located in the northeast region of Xiaotangshan, with 
boundaries ranging from 40°1031″–40°1118″ N lat. to 
116°26′10″–116°27′05″ E long. The research site lies in 
a northern temperate semi-humid continental monsoon 
climate with an average elevation of 36 m. 

As shown in Figure 2, a planting density (T 
area) and a nitrogen (N) fertiliser (N area) test areas were 
established at the experimental site using a completely 
random design. Three levels of planting density: 280 
plants ha-1 (T1), 320 plants ha-1 (T2, control treatment) 
and 360 plants ha-1 (T3) were used. The planting density 
experiment comprised a total of 6 treatments (3 densities 
and 2 cultivars) with 3 repetitions per treatment for a 
total of 18 experimental communities. In the N fertiliser 
experiment, 4 levels of N: 0 kg ha-1 (N0), 0.72 kg ha-1 (N1), 
1.45 kg ha-1 (N2, control treatment) and 2.12 kg ha-1 (N3) 
were used; 1/2 of each level was applied as basal fertilizer, 
while the other half was applied as jointing fertilizer. The 
N experiment contained a total of 8 treatments (4 N levels 
and 2 cultivars) with 3 repetitions per treatment. The total 
length of the community was 39.6 m from East to West 
and 45 m from North to South (excluding protective 
line). In total, 42 experimental plots were established, 
each with an area of 5 × 6.6 m2. 

The farming method was forefoot rotation, 
and the previous crop was maize. The tested potato 
(Solanum tuberosum L.) cultivar was ‘Zhongshu 185’. 
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Based on the growth habit of this cultivar, as the soil 
type was selected Histosol (WRB, 2014). A spray-type 
automatic control irrigation system was installed in test 
plot. Using the automatic control system, the watering 
amount was set to 4 levels: 1 – very low, 2 – low, 3 – 
medium and 4 – high watering. After the emergence of 
the seedlings, only minimal cultivation was applied to 
keep the soil loose and level 1 of watering was added. 
At the seedling stage, soil cultivation was continued and 
the watering amount was set to level 3; the appropriate 
amounts of nitrogen (N), phosphorus (P) and potassium 
(K) were added. Before appearance of buds, the amount 
of watering was set to level 2. At the budding stage, the 
amount of irrigation water was increased and set to level 
4. In order to increase the permeability of the soil, the soil 
was deeply ploughed and then covered with 3–5 cm thick 
soil around the roots. At the later growth period (15 days 
before harvest), foliar fertilizer containing 0.5% urea and 
0.3% KH2PO4 (potassium dihydrogen phosphate) was 
sprayed on the plants. 

Data acquisition. An unmanned aerial vehicle 
(UAV) remote sensing data acquisition experiment was 
carried out synchronously with the field data acquisition 
and sampling. Radiation correction (field calibration) 
was completed before the flight. All flight directions 
were North–South, and the height of the hyperspectral 
data (HD) acquisition was 40 m. Data were collected 
during the following five typical potato growth stages: 1) 
the budding stage (on 15 May, 2018, when the weather 
was sunny and cloud-free); 2) the tuber formation stage 
(on 29 May, 2018, when the weather was sunny and 
cloud-free); 3) the tuber growth stage (on 5 June, 2018, 
when the weather was sunny and cloud-free); 4) the starch 
accumulation stage (19 June, 2018, when the weather was 
sunny and cloud-free); and 5) the mature stage (on 29 June, 
2018, when the weather was sunny cloud-free. Due to the 
poor measurement accuracy of ChlC of the dry leaves at 
the mature stage, data of the first four growth stages for 
modelling and model accuracy verification were selected. 

Determination of potato chlorophyll content 
(ChlC). During each growth stage, the ChlC data were 
obtained synchronously with the UAV hyperspectral 
remote sensing data. Six leaves were randomly selected 
from the potato plant samples in each area, and 12 small 
samples from each leaf were collected using a 0.8 cm 
diameter puncher. The samples were weighed immediately 
using a balance of 0.001 g. Samples were then placed in 
test tubes containing 80 mL of 95% ethanol extract. Then 
the tubes were placed in the dark and shaken once a day 
until the leaves turned white. The optical density (OD) of 
the ethanol solution at visible wavelengths of 440, 655 
and 649 nm was measured using a spectrophotometer 
Ci60 (X-rite, USA), and ChlC was calculated using 
equation (Dordas, 2011): 

Chl (µg cm-2) = (6.10 × OD655 + 20.04OD649) ×
V × 10 / S / 1000, (1), 
where Chl is the chlorophyll concentration 

(µg cm-2), OD655 and OD649 – the absorbance values at 
655 and 649 nm, respectively, V – the volume (mL) of 
the 95% ethanol extract, S – the leaf sample area (dm2). 

Acquisition and processing of UAV hyperspectral 
data (HD). An electric 8-rotor UAV (DJI Innovation 
Technology Co. Ltd., China) was used as the loading 
platform of the HD acquisition system. As shown in 
Figure 3, the system consists of a flight control system, 
inertial measurement system (inertial measurement 
unit, IMU), wireless remote-control system, ground 
control system, data processing system and sensor (HD 
multispectral camera and acquisition system). 

Figure 1. Location of potato test plot 

Figure 2. Design of the experiment 

Figure 3. Unmanned aerial vehicle (UAV) hyperspectral 
data acquisition system 

The hyperspectral sensor adopted the imaging 
spectrometer Cubert UHD 185 (Cubert GmbH, Germany). 
The basic technical parameters are listed in Table 1. 

UAV data collection was carried out, when the 
solar radiation intensity was stable, and the sky was clear and 
cloudless. Before acquiring the hyperspectral images of the 
UAV, a standard white board was placed near the research 
area for calibration. The flight altitude was 50 m, and the 
flight was conducted according to the planned route. 

UAV HD processing primarily included radiation 
correction, image mosaicking and spectral extraction of 
the average canopy area. First, based on the UHD 185 
centre wavelength and half-width of the wavelength, 
a radiation calibration system was designed in the 
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Table 1. The parameters of imaging spectrometer Cubert UHD 185 

Parameter Value Parameter Value
Spectral resolution nm 4 Spectral range nm 454–950
Pixel resolution nm 0.034 Scanning speed, lines 15–60
Viewing angle ° 20 Standard lens focal length mm 25

MATLAB environment to perform radiation correction 
from the image digital number (DN) value to the surface 
reflectance. Second, the images of the test area were sieved 
and spliced using software Agisoft PhotoScan (Agisoft 
LLC, Russia). In the process of image mosaicking, 
professional software was used to align and transform 
each image into cue-format data, and then subbands of 
the image were extracted into a .jpg file. Finally, the 
subband images of each mosaic were merged to generate 
regional hyperspectral image data. The average spectrum 
of 125 band in each study area was extracted using IDL 
programming language. In the extraction process, the 
image was resampled using the pixel aggregation method 
and exported to the corresponding comma-separated 
values (CSV) format file for later data analysis. 

Fractional-order differential is an extension 
of integer order differential, that is the definition of 
differential is generalised. When the differential order 
is a positive integer, the integer-order differentiation 
becomes a special case of fractional-order differentiation. 
Three common fractional-order differential forms: the 
Caputo, Riemann-Liouville and Grünwald-Letnikov 
definitions, have been developed; however, to process 
HD, the Grünwald-Letnikov differential definition was 
adopted (Ngo Van, Ho, 2020): 

     
  (2), 

where λ is the corresponding wavelength, Γ 
– the gamma function, n – the difference between the 
upper and lower bounds of the differential, a – any order. 
When α = 0, 1 or 2, it is the original function (original 
spectrum), 1-order or 2-order differential spectra. When 
α is a decimal, it is in the form of the Grünwald-Letnikov 
fractional-order differential. In this study, 11 types of 
canopy differential spectral data for each growth stage 
were obtained using the layer height spectral data of 
potato crowns at the 454–950 nm band, and the Grünwald-
Letnikov differential method is defined in equation (2) 
for 0–2 differential processing with a step length of 0.2. 

Pearson correlation analysis. The variation 
trend of two or more groups of data to determine the 
degree of closeness of their relationship was assessed. 
In this approach, the correlation coefficient is often used 
for discriminant analysis. It was obtained by dividing the 
covariance of two random variables using the standard 
deviation. The correlation coefficient was between −1 
and 1. A large absolute value indicates a large correlation 
degree, whereas a value close to 0 indicates no correlation. 
The calculation method is shown in equation: 

where ρX,Y represents the correlation coefficient, 
cov(X,Y) and σ – covariance and standard deviation, 
respectively. 

Model accuracy evaluation index. To evaluate 
the model accuracy, the coefficient of determination (R²), 
root mean square error (RMSE) and normalized root 
mean square error (nRMSE) were used. Calculations of 
the evaluation index are shown in equations:

 

(4), 

 (5),
   

     
 (6),

where yi is the estimated value,  – the mean value, 
xi – the measured value, n – the number of samples. 

In general, the larger the R2, the smaller the RMSE. 
This indicates a good fit of the model. The nRMSE defines 
the accuracy range in the model validation. A value for 
nRMSE < 10% indicates that the estimated and measured 
values are in very good agreement, 10% < nRMSE < 20% 
– good agreement, 20 ≤ nRMSE < 30% – intermediate 
agreement and nRMSE ≥ 30% – poor agreement. 

Results
Correlation analysis of the canopy original 

spectrum and chlorophyll content (ChlC). In Figure4, 
the spectral curve of the potato canopy presents 
typical greenery reflection characteristics. The spectral 
reflectance in the visible band between 0.05 and 0.55 has 
a typical plant Chl reflection peak at approximately 550 
nm. As the wavelength changes, the spectral reflectance 
shock after 682 nm forms the “red edge” characteristic of 
typical green vegetation. 

The original spectral band had the best 
correlation with potato ChlC, as determined by Pearson 
correlation analysis. The result of the correlation was 
obtained between the original spectrum and the ChlC of 
the potato canopy at different growth stages (Figure 5). 

The data in Figure 5 show the following. (A) At 
the budding stage, the original potato canopy spectrum 
had an extremely significant negative correlation with 
ChlC at the level of 0.01 within the ranges of 502–662 
and 662–714 nm, and an extremely significant positive 
correlation with ChlC within the range of 734–950 nm, 
reaching 0.01 extremely significant level. As the spectral 
bands related to ChlC were mainly visible, the bands 
with the largest 538, 710 and 714 nm correlations were 
considered within the band interval significantly related 
to ChlC; the correlation coefficients of these bands were 
−0.66, −0.77, and −0.76, respectively. 

(B) At the potato tuber formation stage, the 
original canopy spectrum was significantly negatively 
correlated with ChlC at the 0.01 level within the ranges 
of 506–654 and 690–726 nm, reaching 0.01 extremely 
significant level, and no band had an extremely significant 
positive correlation with ChlC. Therefore, in the visible band 
ranges of 506–654 and 690–726 nm, there were selected 

Figure 4. Spectral curve of the potato canopy 

(3),
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Figure 5. Correlation between the potato canopy original 
spectrum and chlorophyll content at different growth 
stages 

the 550, 710 and 714 nm bands, which had the highest 
correlation with ChlC; the corresponding correlation 
coefficients were 0.70, 0.73 and 0.73, respectively. 

(C) At the potato tuber growth stage, the original 
canopy spectrum was negatively correlated with ChlC at 
the 0.01 level within the range of 454–718 nm and reached 
the 0.01 level within the range of 738–934 nm, reaching 
0.01 extremely significant level. Therefore, the 558 and 
566 nm visible bands, which had the largest correlation 
with ChlC, were selected; the corresponding correlation 
coefficients were −0.71 and −0.72, respectively. 

(D) At the starch accumulation stage, the 
original potato canopy spectrum had an extremely 
significant negative correlation with ChlC at the level of 
0.01 within the range of 454–710 nm, and an extremely 
significant positive correlation with ChlC at the level 
within the range of 726–950 nm, reaching 0.01 extremely 
significant level. Therefore, in the range of 726–950 nm 
visible bands, the bands with the highest correlation 
were 786 nm and 790 nm; the corresponding correlation 
coefficients were 0.65 and 0.66, respectively. 

Correlation analysis of the fractional differential 
spectrum and ChlC. The potato canopy HD in the 454–950 
nm band in the differential method of equation (2) was 
used. The 0–2-order differential processing was carried out 
(the order interval was 0.2), resulting in 11 types of canopy 
differential spectral data in four typical growth periods. The 
correlations between the different differential spectra and 
ChlC are shown in Figure 6. 

According to the correlations between the 
potato ChlC and fractional differential canopy spectrum 
at different growth stages, the relationship between 
the canopy spectrum of each order differential and the 
absolute value of the maximum of ChlC at different 
growth stages was analysed, and order curves showing 
the absolute value of the maximum of the correlation 
coefficients of ChlC and various differential orders at 
different growth stages were drawn (Figure 7). 

Figures 6 and 7 show that as the differential 
order increased, the differential order that yielded 
the maximum absolute correlation coefficient value 
in different growth periods differed according to the 
analysis of the absolute correlation coefficient values 
for potato ChlC and the differential orders at different 
growth stages. At the budding stage, the absolute value 
of the correlation coefficient was highest for 1-order 
differentiation (662 and 686 nm). At the potato tuber 
formation and tuber growth stages, the absolute value 
of the correlation coefficient was highest for 0.6-order 
differentiation (538, 526, 506 and 558 nm). At the starch 
accumulation stage, the absolute value of the correlation 
coefficient was highest for 1.2-order differentiation 
(822 nm). Although the “red edge” and the “green” 

bands are closely related to the crop ChlC, only the “red 
edge” and the “green” bands information are used to 
estimate the ChlC. The effective validity of the spectral 
data cannot be fully exploited leading to the saturation 
phenomenon in the process of ChlC estimation. Using 
fractional differentiation refines the effective information 
of spectral data to improve the spectral data sensitivity 
and enhance the correlation between the information of 
the “red edge” and “green” bands and ChlC. 

To avoid as much collinearity among different 
differential bands as possible, the absolute correlation 
coefficient values of ChlC were sorted from large to 
small, and the top 10 scores in each typical growth stage 
at a significance level of 0.01 were screened out. Then, 
a matrix diagram of the correlation coefficients of ChlC 
and the fractional differential spectrum in potatoes at 
different growth stages was plotted (Figure 8). 

Figure 8 shows that at the budding stage, 0-
order differentiation occurs in the 710 and 714 nm bands, 
0.2-order differentiation – in the 706 nm band, 0.4-order 
differentiation – in the 702 and 698 nm bands, 0.6-order 
differentiation – in the 690 and 694 nm bands, 0.8-
order differentiation – in the 514 nm band and 1-order 
differentiation – in the 662 and 686 nm bands. The absolute 
value of the correlation coefficient is between 0.74 and 
0.85, reaching 0.01 significance level. At the tuber growth 
stage, 0-order differentiation occurs in the 538 and 574 
nm bands, 0.2-order differentiation – in the 562, 566 and 
570 nm bands, 0.6-order differentiation – in the 506 and 
558 nm bands, 1.2-order differentiation – in the 454 and 
658 nm bands and 2.0-order differentiation – in the 714 
nm band. The absolute value of the correlation coefficient 
is between 0.61 and 0.71, reaching 0.01 significance level. 
At the starch accumulation stage, 0-order differentiation 
occurs in the 790 nm band, 0.4-order differentiation – in 
the 750 nm band, 0.6-order differentiation – in the 582 
and 786 nm bands, the 0.8-order differentiation – in the 
558-nm band, 1.0-order differentiation – in the 734 nm 
band, 1.2-order differentiation – in the 822 nm band, 
1.4-order differentiation – in the 662 nm band, 1.6-
order differentiation – in the 794 nm band and 1.8-order 
differentiation – in the 718 nm band. The absolute value 
of the correlation coefficient is above 0.65, reaching 0.01 
significance level. 

Optimal model selection of potato ChlC based 
on the fractional differentiation of the canopy spectrum. 
The ChlC was used as the dependent variable from 0- to 
2-order fractional differentiation to determine the optimal 
band, which was the independent variable. The model 
was established using a fractional-order differential 
spectrum and ChlC, multiple linear regression (MLR), 
support vector machine (SVM) and random forest (RF) 
models. The accuracy of the models was verified, and the 
optimal estimation model was screened (Table 2). 

The data of Table 2 show the following. (1) At the 
budding stage, compared with the MLR and RF models, 
for the SVM, the R2 of the modelling accuracy increased 
by 5% and 6%, while the RMSE decreased by 0.18 and 
0.06 µg cm-2, respectively. The R2 of verification accuracy 
increased by 9% and 6%, and the RMSE decreased by 
0.41 and 0.25 µg cm-2, respectively. These results show 
that the accuracy of potato ChlC estimation model was 
higher for SVM than for MLR and RF models. For the 
validation model, the R2 of the MLR was higher than that 
of the SVM and RF models. The RMSE and nRMSE of 
the MLR were close to those of the SVM and RF models. 
This shows that the stability of the MLR was higher than 
that of the SVM and RF models. 

(2) At the tuber formation stage, in the verification 
model, the R2 of the RF was 3% and 2% higher than the 
R2 of the SVM and MLR models, respectively, and the 
RMSE value of the RF was similar to that of the SVM 
and MLR models. The accuracy of the ChlC estimation 
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Figure 6. Correlation between the chlorophyll content and fractional differential spectrum of potato 
model based on the SVM was higher than that based on 
the MLR and RF models. The stability of the RF was 
higher than that of the SVM and MLR models. 

(3) At the tuber growth stage, in the verification 
model, the accuracy of the ChlC estimation model based 
on the MLR was higher than that based on the SVM and 
RF models. The stability of the MLR was higher than that 
of the SVM and RF models. 

(4) At the starch accumulation stage, the 
accuracy of the ChlC estimation model based on the 
MLR was higher than that based on the RF and SVM 
models. The stability of the MLR was higher than that of 
the RF and SVM models. 

In summary, the SVM was selected to construct 
the model to estimate potato ChlC at the budding and 
tuber formation stages, and the MLR was selected to 
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Figure 7. Absolute correlation coefficient and order curve of the chlorophyll content at different growth stages of 
potato 

Figure 8. Correlation coefficient matrix of the chlorophyll content and fractional differential spectrum of potato 

Table 2. Accuracy of estimation model of chlorophyll content at different growth stages of potato 

Growth 
stage

Modelling
method

Modelling accuracy Verification accuracy
R2 RMSE nRMSE R2 RMSE nRMSE

(1) Budding MLR 0.78** 2.76 6.38% 0.71** 2.96 6.89%
SVM 0.83** 2.58 5.92% 0.62** 3.37 7.84%

(2) Tuber formation
RF 0.77** 2.97 6.84% 0.65** 3.21 7.48%

MLR 0.78** 2.79 7.40% 0.67** 2.77 7.51%
SVM 0.80** 2.86 7.52% 0.66** 3.07 8.32%

(3) Tuber growth
RF 0.63** 3.94 10.34% 0.69** 2.70 7.31%

MLR 0.64** 3.56 9.77% 0.57** 4.04 11.71%
SVM 0.55** 3.84 10.39% 0.47** 4.86 13.73%

(4) Starch accumulation
RF 0.47** 4.25 11.37%   0.39 4.94 14.31%

MLR 0.67** 3.49 11.56% 0.78** 2.81 9.03%
SVM 0.63** 3.52 11.47% 0.60** 4.10 14.01%
RF 0.50** 4.40 14.31% 0.46** 4.20 14.39%

MLR – multiple linear regression, SVM – support vector machine, RF – random forest; ** – significant at p < 0.01 



188

construct the model to estimate ChlC at the tuber growth 
and starch accumulation stages (Figure 9). 

Discussion
The advantages of hyperspectral data (HD) 

include high spectral resolution and abundant spectral 
information of ground objects. The spectral characteristics 
of ground objects can be analysed from multiple angles, 
and the detailed information of crops can be expressed 
more comprehensively. Song et al. (2016) showed that 
HD having a high spectral resolution can be used to 
capture the changes in crop biochemical components: 
various pigments, N, Chl, lignin, cellulose and water. 
This results in a tiny position and depth difference in 
the spectral reflection spectrum curve, which enables an 
accurate estimation of crop biochemical parameters. 

The results of the present study showed that at 
the budding, tuber formation, tuber growth and starch 
accumulation stages, the mean and maximum values of 
R2 of the optimal model for ChlC estimation were 0.74 
and 0.83, respectively, indicating a good estimation 
effect. The results are consistent. 

He et al. (2018) treated the HD with integer-order 
differentiation, constructed the differential ratio index Di 
/ Dj, normalized index (Di ‒ Dj / Di + Dj) and constructed 
an estimation model for the ChlC of crops. The results 
showed that the R2 of the model was 0.77 and 0.68, 
respectively. The estimation accuracy of ChlC was lower 
than that of the fractional differential estimation model 
in the present study. This is mainly because the original 
spectrum and integer-order differential spectrum ignore 
the gradual change information of the spectral curve. 
Fractional differential can refine the local information of 
the spectrum, which aids in the reduction of background 
noise, the extraction of detailed information, improvement 
in the sensitivity of the spectral data and enhancement of 

the correlation between the information of “red edge” and 
“green” bands and ChlC. The conclusions are consistent 
with those of Faghih and Mokhtary (2021). 

Results of our experiment demonstrate that the 
best growth period for potato ChlC estimation is the 
budding stage. This is mainly due to the rapid growth 
of stems and leaves during this growth period, the rapid 
increase in ChlC as well as photosynthesis efficiency and 
the obvious difference in spectral response characteristics 
(the correlation with ChlC was the strongest). After plants 
enter the flowering stage, the ChlC gradually decreases, 
and the difference in spectral response characteristics 
gradually weakens, which is consistent with the research 
conclusions of Liu et al. (2020). 

Conclusion 
Fractional differentiation can effectively 

remove the background noise of the image and fully 
excavate the potential information in the hyperspectral 
spectrum. Therefore, the paper applied fractional-order 
differentiation technology to unmanned aerial vehicle 
(UAV) hyperspectral data (HD) processing. Using the 
spectral data processed by fractional differentiation, 
based on the models of multiple linear regression (MLR), 
support vector machine (SVM) and random forest (RF), 
the potato chlorophyll content (ChlC) at different growth 
stages was estimated. 

The results showed that at the budding, tuber 
formation, tuber growth and starch accumulation stages, 
the R2 of the optimal ChlC estimation model reached 
0.83, 0.80, 0.64 and 0.67, respectively, indicating that the 
hyperspectral fractional differential technique applied to 
crop ChlC estimation is feasible and the estimation effect 
is good. When constructing the potato ChlC estimation 
model, the statistical model was used, which was simple, 
quick and easy to operate. However, this method relies 

SVM – support vector machine, MLR – multiple linear regression

Figure 9. Chlorophyll content (ChlC) predicted and measured values at different growth stages of potato

Machine learning-based estimation of potato chlorophyll content at different growth stages                             
 using UAV hyperspectral data
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on remote sensing data and ground measured data, which 
simplifies the radiation transmission process and does 
not consider the radiation transmission mechanism. 

The radiation transmission model considers the 
influence of crop physiological parameters on the spectral 
reflectance, but the model is too complex, having numerous 
parameters that affect one another. Therefore, in follow-
up research, the combination of the radiation transmission 
mechanism and statistical model should be considered 
in order to further improve the robustness of the model. 
Moreover, the small size of the sample has a certain impact 
on the robustness of the model. In future studies, the sample 
size, number of crop cultivars, sample age range and sample 
collection area can all be increased, thereby improving the 
universality and robustness of the model. 
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Išmaniosiomis sistemomis pagrįstas chlorofilo kiekio 
įvertinimas bulvėse skirtingais augimo tarpsniais naudojant 
bepiločiu orlaiviu gautus hiperspektrinius duomenis 
C. Li1, C. Ma1, P. Chen1,2, Y. Cui1, J. Shi1, Y. Wang1

1Henan politechnikos universiteto Topografijos ir žemės inžinerijos informacijos mokykla, Kinija 
2GZH-HNJ BDS AGR Co. Ltd., Kinija 

Santrauka 
Siekiant pagerinti bulvių derlingumą ir kokybę, labai svarbu yra tiksliai įvertinti chlorofilo (Chl) kiekį. Frakcinė 
diferenciacija gali patikslinti vietinę spektro informaciją ir yra naudinga šalinant foninį triukšmą. Siekiant ištirti 
frakcinės diferenciacijos poveikį Chl kiekio nustatymui augaluose, buvo sukurtas naujas metodas. Tyrimo objektas 
– valgomoji bulvė (Solanum tuberosum L.). Bepiločiu orlaiviu surinkti hiperspektriniai duomenys apdoroti 
naudojant frakcinį išskaidymą, ir buvo tirtas bulvių Chl kiekio įvertinimo algoritmas. 
Tyrimo rezultatai parodė, kad koreliacija padidėjo po pirmojo išskaidymo didėjant diferenciniam laipsniui; 
maksimalios absoliučios koreliacijos koeficiento reikšmės skirtingais etapais buvo gautos su 1 laipsnio diferenciacija 
pumpurų formavimosi tarpsniu, 0,6 laipsnių diferenciacija gumbų formavimo ir gumbų augimo tarpsniais ir 1,2 
laipsnio diferenciacija krakmolo kaupimosi metu. Lyginant ir analizuojant bulvių Chl kiekio skirtingais augimo 
tarpsniais nustatymo modelius padaryta išvada, kad vertinant bulvių Chl kiekį tiksliausias buvo atramos vektoriaus 
klasifikatoriaus (SVM) modelis, kurio R2 vertė pumpurų formavimosi tarpsniu buvo 0,83, gumbų formavimo 
tarpsniu – 0,80. 

Reikšminiai žodžiai: chlorofilo kiekis, frakcinė diferenciacija, hiperspektriniai duomenys, Solanum tuberosum. 
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