Pathogenicity of *Colletotrichum acutatum* to different strawberry cultivars and anthracnose control with essential oils

Armina MORKELIŪNĖ, Neringa RASİUKĖVIČIŪTĖ, Alma VALIUŠKAITĖ

Lithuanian Research Centre for Agriculture and Forestry
Kauno 30, Babtai, Kaunas distr., Lithuania
E-mail: armina.morkeliune@lammc.lt

Abstract

Colletotrichum spp. is a significant strawberry (*Fragaria × ananassa* Duch.) pathogen causing yield losses of up to 80%. Due to the changing agrometeorological conditions, pathogens are able to spread in cooler climate countries. Essential oils (EO), as one of the environmentally friendly plant protection products, can be used to control plant pathogens. They possess antibacterial and antifungal properties. Because of the low toxicity and biodegradability, EO can be used in plant protection against pathogens instead of chemical products.

This study aimed to determine the pathogenicity of strawberry *C. acutatum* and evaluate five essential oils at different concentrations as potential bio-fungicides against strawberry anthracnose (*Colletotrichum acutatum*). The *C. acutatum* pathogenicity was evaluated on detached strawberry leaves. The inhibitory effect of five EO at 200, 400, 600, 800 and 1000 µL L⁻¹ was evaluated *in vitro*, and at 800 and 1000 µL L⁻¹ – on detached strawberry leaves. The cultivar ‘Deluxe’ was found to be the most susceptible to strawberry anthracnose, while ‘Rumba’ and ‘Elegance’ exhibited resistance. The results of *Mentha piperita* EO revealed its antifungal activity against *C. acutatum*. Meanwhile, *Salvia officinalis* EO had no influence. The *Coriandrum sativum* and *Hyssopus officinalis* EO slightly inhibited *C. acutatum* growth. The results of *Thymus vulgaris* EO assay in vitro demonstrated that it could be an effective biocontrol agent against strawberry anthracnose.

EO inhibited the mycelial growth of *C. acutatum in vitro*; however, the results of the assay on detached strawberry leaves showed that the efficiency of EO was not sufficient and needed further research.

Key words: antifungal activity, common sage, common thyme, coriander, hyssop, peppermint.

Introduction

The extreme temperature changes favour the spread of plant diseases and evolution of new strains. New or invasive species with possible higher dispersal capability could quickly adapt to variable conditions (Freeman et al., 2001; Aguado et al., 2014). Due to the agrometeorological conditions, pathogenicity, diversity and taxonomy of *Colletotrichum* species complex change the distribution of the pathogen and disease severity across the growing areas (Freeman et al., 2001; Avila-Quezada et al., 2018).

The *Colletotrichum* species complex infects and causes diseases on many economically important crops. *Colletotrichum* spp. causes fruit and crown rots, infections of stolons, petioles and leaves by *C. acutatum*, *C. fragariae* and *C. gloeosporioides* (Debode et al., 2015; Wagner, Hetman, 2016). The *Colletotrichum* spp. is dangerous to fruit plants and propagation material in nurseries, as it infects not only young or senescent tissues but also the whole plant at all growth stages (Peres et al., 2005; Wagner, Hetman, 2016). Warm temperatures promote the incidence of the pathogen and its severity during the growing season (Miller-Butler et al., 2019). The favourable conditions for fungus development are 25°C up to 40°C temperature and high humidity (Peres et al., 2005; Moral et al., 2012). *C. acutatum* can survive in the soil or on its surface in Nordic conditions (Parikka et al., 2016). The yield losses depend on the resistance of strawberry (*Fragaria × ananassa* Duch.) cultivars to *Colletotrichum* spp. (Wagner, Hetman, 2016); however, it can cause up to 80% of plant death in nurseries and more than 50% yield losses (Sreenivasaprasad, Talhinhas, 2005).

Screening of *Colletotrichum* spp. pathogenicity on the detached strawberry leaves helps assess symptom development and reduce the overall time (Miller-Butler et al., 2018). Information about strawberry pathogenicity helps choose cultivars and design effective disease management systems (Freeman et al., 2001; MacKenzie et al., 2009; Wagner, Hetman, 2016; Miller-Butler et al., 2018).
Growing of strawberry cultivars resistant to the *Colletotrichum* spp. is more environmentally friendly and cost-effective than chemical control (Wagner, Hetman, 2016). However, overuse of fungicides could lead to pathogen resistance (Miller-Butler et al., 2019). The control of *Colletotrichum* spp. is based on several strategies, including chemical and biological control, resistant cultivars, etc. (Aguado et al., 2014).

Natural plant protection agents that have a less adverse effect on crops such as plant extracts and essential oils showed a different level of antimicrobial efficacy to various ranges of fungal and bacterial pathogens. The essential oils (EO) and extracts can be applied as one of the eco-friendly plant protection products controlling plant pathogens or as plant defence inducers (Çetin et al., 2011; Aguado et al., 2014; Aćimović et al., 2016; Bajpai et al., 2019). Research studies have found that antibacterial and antifungal properties, bio-degradability and low toxicity of EO make them a potential source of natural plant protection (Çetin et al., 2011; Aćimović et al., 2016). The EO include terpenes, esters, aldehydes and phenols are a source of natural antioxidants and biologically active compounds. EO mostly are secondary metabolites, which play an essential role in plant defence, as they often possess antimicrobial properties and are non-toxic and biodegradable (Girish, Fathima, 2019).

As products from plants, EO have a wide application in pharmacy, fragrance and food industries; however, recent EO studies revealed their potential antimicrobial activity (Starović et al., 2016; Kumar, Kudachikar, 2018).

It has been reported in the literature, that thyme, coriander and peppermint EO had antifungal activity against plant diseases, including *Colletotrichum* spp. (Çetin et al., 2011; Duduk et al., 2015; Aćimović et al., 2016; Kumar, Kudachikar, 2018). The antifungal effect of *Coriandrum sativum* EO on the growth rate of *Colletotrichum* pathogens has been highlighted (Aćimović et al., 2016). *C. sativum* EO has antimicrobial activity against various plant and human pathogens (Laribi et al., 2015) as *Aspergillus* spp. and *Fusarium* spp. (Singh et al., 2006). The *Salvia officinalis* is rich in essential oils, flavonoids, phenolic and terpenoid compounds (Yilar et al., 2018). *S. officinalis* EO affects *Fusarium* spp. growth (Starović et al., 2016). *Mentha piperita* EO shows significant antifungal activity against *Alternaria alternata*, *Fusarium tabacinum*, *Fusarium oxysporum* and other pathogens (Desam et al., 2017). According to Çetin et al. (2011), *T. sipeleus* subsp. *sipleus* var. *rosulans* and *Origanum acutidens* EO can be used as a natural preservative in food against casual agents of food-borne diseases like *Escherichia coli*, *Pseudomonas* spp., *Geotrichum candidum* and others. However, there is a lack of literature on the antifungal activity of *Hyphopodium officinalis* EO. Some of the EO have been evaluated for controlling *Colletotrichum* spp. (Mandal, Mandal, 2015; Aćimović et al., 2016). However, there is a lack of investigations on the effects of *T. vulgaris*, *M. piperita*, *S. officinalis* and *H. officinalis* EO on strawberry *Colletotrichum* spp.

Due to the increasing cultivation area of new strawberry cultivars from warmer climate zones and growing disease incidence, it is essential to evaluate the susceptibility of various strawberry cultivars to *Colletotrichum* spp. Alternative products for biological plant protection are under investigation due to the increasing resistance of pathogens and the harm of pesticides to humans and the environment. As EO have antifungal properties, they could be one of the environment-friendly plant protection products.

This study aimed to determine the pathogenicity of strawberry *Colletotrichum acutatum* and evaluate different concentrations of five essential oils as potential bio-fungicides against strawberry anthracnose.

Materials and methods

The research was carried out at the Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry in 2017–2020.

Extraction of essential oils (EO) and plant material. EO were obtained from naturally dried seeds of common thyme (*Thymus vulgaris* L.), common sage (*Salvia officinalis* L.), peppermint (*Mentha piperita* L.), hyssop (*Hyssopus officinalis* L.) and coriander (*Coriandrum sativum* L.). The EO were extracted by the Clever-type (Glassco, India) hydro-distillation for 2 hours.

Colletotrichum spp. isolates used in this research were collected in 2018 from the Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry’s experimental field from the infected strawberry (*Fragaria × ananassa* Duch.) cultivar ‘Deluxe’ fruits at BBCH 87 growth stage. The *Colletotrichum* sp. mycelium was maintained by sub-culturing on a potato-dextrose agar (PDA) at 25°C temperature for 7 days. This step was repeated twice to purify the culture, then single-spore isolates were extracted. Single spore *Colletotrichum* sp. isolates No. Fo5 (44, 61 and 65) were stored on the PDA at 4°C temperature at the Laboratory of Plant Protection, Institute of Horticulture’s isolate collection.

The isolates were initially identified by morphological attributes and confirmed by PCR as *C. acutatum* by ITS4 (TCCTCCGCTTATTGATATGC-3) and CaInt2 (GGGGAAGCCTCTCGCGG) primers (Xie et al., 2010). The concentration of *Colletotrichum* sp. DNA was determined by measuring absorbance by a spectrophotometer NanoDrop 1000 (Thermo Fisher Scientific, USA). The PCR was performed in 25 μL volume: 5 μL 10× Tag buffer, 0.5 μL of each (CaInt2 and ITS4) primer, 1 μL 25 mM MgCl₂, 0.5 μL of each (CaInt2 and ITS4) primer, 1 μL of DNA and 0.2 μL 5 μL⁻¹ Taq DNA polymerase (Thermo Fisher Scientific), and 15.8 μL DNase/RNase-free water. The PCR was performed using a thermal cycler UNO 96 (VWR®), and the conditions were 35 cycles, 1 min at 95°C, 30 s at 54°C and 1 min at 72°C. PCR products were separated in 1.5% agarose gels with Midori Green Direct (Nippon Genetics Europe GmbH). The PCR reactions were repeated twice.

Colletotrichum acutatum pathogenicity experiments. To evaluate the pathogenicity of *C. acutatum*, the detached strawberry leaf assay was developed. Leaves were obtained from the Institute of Horticulture. Twelve strawberry cultivars ‘Sonita’, ‘Elkát’, ‘E. 256E’, ‘Pandora’, ‘Syria’, ‘Elegance’, ‘Pegasus’, ‘Darsellect’, ‘Asia’, ‘Furore’, ‘Deluxe’ and ‘Malvina’, were chosen. The visually healthy strawberry leaves composed of three leaflets on a petiole without any visible disease symptoms were sterilized in a 70% ethanol solution for 3 min, rinsed 4–5 times with sterile distilled water and surface-dried for 5 min on sterile filter paper. The upper surface of leaves was wounded with a sterile needle and inoculated with 5 mm mycelial plugs (mycelial side down) in the centre of each multiple leaf.

The control treatment was not inoculated with the *C. acutatum* (control-1) to reject infection with other pathogens. A total of 16 leaves were used per treatment. The experiment was repeated four times,
with four replicates. The plates were incubated at 25°C temperature in the dark. *C. acutatum* pathogenicity on strawberry cultivars was assessed at 14 days after inoculation (DAI). At the end of the experiment, the *C. acutatum* was reisolated from infected leaves and plated on PDA to recover the fungi. The pathogenicity ratings were based on a rating score (1–5): 1) no visible infection, 2) 1–5% leaf area infected, 3) 5–10% leaf area infected, 4) 20% leaf area infected and 5) 50% or more leaf area infected. The infected leaves were categorized (with some modifications) into four rating classes: 1) highly susceptible (3.5–5 rating), 2) susceptible (2.6–3.49 rating), 3) moderately resistant (1.6–2.59 rating) and 4) resistant (0–1.59 rating) (Prom et al., 2012).

Inhibitory effect of EO in vitro. To evaluate the inhibitory effect of different EO concentrations on *C. acutatum*, the 5 mm mycelial plugs of 7-day old fungus (No. Fo5) were cut and placed in the centre of PDA containing Petri plates. The 200, 400, 600, 800 and 1000 µl L⁻¹ of pure EO were added to 45°C PDA medium. The plates were incubated at 25 ± 2°C temperature in the dark. To compare growth without EO, the control treatment was not sprayed with EO (control-2). The experiments were repeated twice. The diameter (cm) of *C. acutatum* colony (including the width of the disc) was measured after 2, 4 and 6 DAI. Calculation of the mean of colony growth diameter used for mycelial growth inhibition (MGI). The MGI was determined using the formula:

\[
\text{MGI} (%) = \left(\frac{\text{dc}_0 - \text{dt}}{\text{dc}_0} \right) \times 100,
\]

where dc is mycelium diameter of the pathogen colony in the control treatment in Petri dish, cm; dt – mycelium diameter of the pathogen colony in the EO-treated Petri dish, cm (Idris et al., 2015; Šernaitė et al., 2020).

EO inhibitory effect on detached strawberry leaves. The leaves of the strawberry cultivar ‘Deluxe’ were prepared as described in pathogenicity experiments. The sterilized rinsed and dried leaves were put on filter paper in a sterile tray, and 50 ml of sterile distilled water was added. The upper surface of leaves was inoculated with 5 mm mycelial plugs (mycelial side down) in the centre of each multiple leaf. A total of 16 leaves were used per treatment; the experiment was repeated three times with four replicates. The leaves were sprayed with 5 ml of 800 or 1000 µl L⁻¹ of EO. To evaluate fungal growth without EO, the control treatment was inoculated with *C. acutatum* but not sprayed with EO (control-3). The trays with detached leaves were incubated at 25°C temperature in the dark. The inhibitory effect of the treatments was evaluated by the infection area (cm²) and leaf area infected (%) after 4 and 6 DAI. At the end of the experiment, the *C. acutatum* was reisolated from infected leaves and plated on PDA to recover the fungi. The disease incidence was estimated as the number of symptomatic leaves over the total leaves by leaves and plated on PDA to recover the fungi. The disease incidence was estimated as the number of symptomatic leaves over the total leaves by the rating score: 1) 0% – no visible infection, 2) 5%, 3) 10%, 4) 20% and 5) 50% or more area of leaf infected (Oliveira et al., 2019).

Disease severity index (DSI) of each inoculated plant leaf was assessed at 5 and 7 DAI by calculating the percentage of leaf area affected: 1) 0% – no visible infection, 2) 5%, 3) 10%, 4) 20% and 5) 50% or more area of leaf infected using the formula:

\[
\text{DSI} = \left(\frac{\text{N} \cdot \text{P0} + \text{I} \cdot \text{P1} + \text{P2} \cdot \text{P2} + \text{P3} \cdot \text{P3} + \text{P4} \cdot \text{P4} + \text{P5} \cdot \text{P5} \cdot \text{P5}}{\text{N} \cdot \text{G}} \right) \times 100,
\]

where P0 to P5 is the total number of observed leaves in each corresponding scale, N – total number of leaves, G – number of maximum grades observed in the scale (Kone et al., 2017; Bajpai et al., 2019).

Statistical analysis. The experimental data were analysed using the analysis of variance (ANOVA) from the software *SAS Enterprise Guide*, version 7.1 (SAS Inc., USA). The standard error (SE) in the figures is marked as an error bar estimated for isolates growth rates. Duncan’s multiple range test (*P < 0.05*) was used to determine differences among the treatments. Disease severity index expressed as mean ± standard deviation.

Results

Colletotrichum acutatum pathogenicity. The detached leaf assay was developed to determine the pathogenicity of *C. acutatum* on various strawberry cultivars. The results revealed that *C. acutatum* isolate from strawberry was able to cause anthracnose to all cultivars and was pathogenic in this study. The clear *C. acutatum* necrotic (black) areas developed on inoculated leaves. The cultivar ‘Deluxe’ showed pathogenicity (3.75) and was attributed to the group of cultivars highly susceptible to anthracnose. Cultivars ‘Malvina’, ‘Elkat’, ‘Pegasus’, ‘Furore’ and ‘Pandora’ were attributed to the group of cultivars susceptible to anthracnose and had lower pathogenicity rating (3.46, 3.36, 3.25, 3.08 and 2.83, respectively) compared with the ‘Deluxe’. Additionally, ‘Syria’, ‘Darselect’ and ‘Sonata’ were attributed to the group of moderately resistant cultivars. They were not significantly different from one another with 2.09, 2.07 and 2.0 pathogenicity rating, respectively. Compared with other cultivars, ‘Asia’, ‘Elegance’ and ‘Rumba’ had significantly lower disease incidence and showed the highest resistance. The least susceptible to *C. acutatum* was ‘Rumba’ (1.5) and ‘Elegance’ (1.5) (Figure 1).

Inhibitory effect of EO in vitro. The differences of *C. acutatum* growth among the five EO were assessed after 2, 4 and 6 DAI (Figure 2). The results showed that *Thymus vulgaris* EO completely suppressed *C. acutatum* at concentrations > 200 µl L⁻¹: at 6 DAI, there were no visible fungal growth symptoms. The *C. acutatum* growth in the control-2 treatment at 2 DAI was 0.13 cm day⁻¹ and at 6 DAI – 2.65 cm day⁻¹, as at all thymus concentrations growth was 0 cm day⁻¹. *T. vulgaris* EO achieved the highest mycelial growth inhibition of 100% at all tested concentrations.

The data of our experiment indicate that the concentrations of *Salvia officinalis* EO against *C. acutatum* were not as effective as those of *T. vulgaris*. However, at the 800 µl L⁻¹, slight mycelial growth inhibition (0.06 cm day⁻¹) can be seen. The results showed that the 200 µl L⁻¹ (0.54 cm day⁻¹), 800 µl L⁻¹ (0.53 cm day⁻¹) and 1000 µl L⁻¹ (0.53 cm day⁻¹) had a slight effect on pathogen compared with the control-2 treatment. Besides, it was observed that the 400, 600 and 800 µl L⁻¹ colony growth suppression from 3.19 to 3.05 cm day⁻¹. However, at 6 DAI *S. officinalis* EO suppressed pathogen growth (2.66 cm day⁻¹) at the 1000 µl L⁻¹ with the highest mycelial growth inhibition of 19.88%, while in the control-2 treatment, the average colony growth of *C. acutatum* was 3.32 cm² (Figure 2).

The data of *Coriandrum sativum* EO at 2 DAI demonstrated a slight mycelial growth inhibition from 0.15 to 0 cm day⁻¹; meanwhile, in the control-2 treatment, mycelium growth was 0.1 cm day⁻¹. At 4 DAI, the highest concentration of *C. sativum* EO showed the best result.
Pathogenicity of *Colletotrichum acutatum* to different strawberry cultivars

Figure 1. Pathogenicity of *Colletotrichum acutatum* to the strawberry cultivars at 14th day after inoculation

Note. Means followed by the same letter did not differ significantly (*P* < 0.05).

Figure 2. The inhibitory effect of five essential oils (EO) against *Colletotrichum acutatum* on strawberry after 2, 4 and 6 days after inoculation

Note. Means followed by the same letter did not differ significantly (*P* < 0.05).
It reduced *C. acutatum* growth to 0.39 cm day\(^{-1}\) compared with the control-2 treatment (0.69 cm day\(^{-1}\)). According to the *C. sativum* data, there was observed a noticeable antifungal activity at 6 DAI compared EO concentrations with the control-2 treatment. The lowest colony growth was observed at 1000 µL L\(^{-1}\); colony diameter was significantly lower (2.43 cm day\(^{-1}\)) than in the control-2 treatment (3.32 cm day\(^{-1}\)). The highest mycelial growth inhibition was 26.81%, when the 400, 600 and 800 µL L\(^{-1}\) suppressed colony growth from 2.79 to 2.68 cm day\(^{-1}\) (Figure 2).

Hyssopus officinalis EO at 1000 µL L\(^{-1}\) completely inhibited the growth of *C. acutatum* at 2 DAI. However, the growth of pathogen was 0.1 cm day\(^{-1}\) in the control-2 treatment. The *H. officinalis* EO at 1000 µL L\(^{-1}\) reduced colony growth (0.49 cm day\(^{-1}\)) compared with the control-2 treatment (0.69 cm day\(^{-1}\)) at 4 DAI. The 800 µL L\(^{-1}\) was most effective and showed the best result compared with the other concentrations at 6 DAI (2.26 cm day\(^{-1}\)) and reached the highest mycelial growth inhibition rate of 30.03% (Figure 2).

The results of the experiment revealed that the highest disease incidence score was recorded at 6 DAI of the treatment with 800 µL L\(^{-1}\) of the *C. sativum* EO. However, the results of 1000 µL L\(^{-1}\) were significantly different. *C. sativum* EO reduced *C. acutatum* growth at 4 DAI, and disease incidence rating was equal compared with the control-3 treatment at 6 DAI. *T. vulgaris* EO showed inhibition of *C. acutatum* at 800 µL L\(^{-1}\) at 4 DAI. *T. vulgaris* EO was found to be the most effective against strawberry anthracnose and gave the highest inhibition of *C. acutatum* growth. *M. piperita* EO at 1000 µL L\(^{-1}\) reduced disease severity compared with control-3 treatment and other concentrations. However, in *H. officinalis* EO treatment at 800 µL L\(^{-1}\), the suppression of *C. acutatum* was not efficient (Figure 3).

Figure 3. The inhibitory effect of essential oils (EO) against *Colletotrichum acutatum* on detached strawberry leaves at 4 and 6 days after inoculation (DAI)

The disease severity index ranged from 66.67 to 100 at 4 DAI. The lowest disease severity index value was observed of *M. piperita* EO at 800 µL L\(^{-1}\) at 4 DAI. Reduction of disease severity by *M. piperita* EO was significantly higher than control-3 and other treatments at 4 DAI (Table).

Table. Percentage of disease severity index on strawberry cultivar ‘Deluxe’ at 4 and 6 days after inoculation (DAI)

<table>
<thead>
<tr>
<th>Colletotrichum acutatum disease severity index %</th>
<th>Control-3</th>
<th>800</th>
<th>1000</th>
<th>800</th>
<th>1000</th>
<th>800</th>
<th>1000</th>
<th>800</th>
<th>1000</th>
<th>800</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration µL L(^{-1})</td>
<td></td>
</tr>
<tr>
<td>4 DAI</td>
<td>79.2 ± 0.2 g</td>
<td>87.5 ± 0.1 i</td>
<td>83.3 ± 0.2 o</td>
<td>75.0 ± 0.3 c</td>
<td>81.9 ± 0.1 k</td>
<td>90.3 ± 0.2 c</td>
<td>81.9 ± 0.1 j</td>
<td>78.9 ± 0.2 c</td>
<td>100 ± 0.1 a</td>
<td>94.4 ± 0.1 b</td>
<td>66.7 ± 0.2 d</td>
</tr>
<tr>
<td>6 DAI</td>
<td>67.8 ± 0.2 d</td>
<td>82.2 ± 0.1 i</td>
<td>91.7 ± 0.2 o</td>
<td>77.8 ± 0.1 k</td>
<td>97.2 ± 0.1 j</td>
<td>88.9 ± 0.2 c</td>
<td>77.8 ± 0.1 k</td>
<td>85.6 ± 0.1 k</td>
<td>81.9 ± 0.1 l</td>
<td>80.0 ± 0.2 q</td>
<td>81.9 ± 0.2 q</td>
</tr>
</tbody>
</table>

Note. Means followed by the same letter did not differ significantly (*P < 0.05*); results expressed as mean ± standard deviation.
Discussion

According to Zhang et al. (2016), no strawberry cultivar has been found to show complete resistance to Colletotrichum spp. The pathogenicity tests showed significant differences among strawberry cultivars. Pathogenicity tests in the cultivar ‘Deluxe’ showed the highest pathogenicity while cultivars ‘Rumba’ and ‘Elegance’ had resistance to C. acutatum. The data of our experiment revealed that various cultivars are differently susceptible to C. acutatum. Wagner and Hetman (2016) reported that ‘Florence’ was more susceptible to C. acutatum than other cultivars, e.g., ‘Darselect’. Leandro et al. (2001) reported that C. acutatum causing symptomless infection of strawberry is a source of inoculum for fruit infections. Garrido et al. (2008) found out that C. acutatum was more pathogenic than C. gloeosporioides to cultivars ‘Camarosa’ and ‘Ventana’. El Kaissoumi et al. (2018) reported that there are significant differences in disease severity between cultivars. The most susceptible to Colletotrichum spp. was ‘Fortuna’. Besides, due to C. gloeosporioides infection, pathogen develops brown spots and irregular blotches on strawberries. However, due to the Colletotrichum spp. tissue colonization, their pathogenicity and survival on different plant parts of various strawberry cultivars showed differences (El Kaissoumi et al., 2018). Seijo et al. (2008) found out different resistance levels in various strawberry cultivars.

The knowledge about various cultivars could help integrated plant protection. The effective EO as potential bio-fungicides could differently suppress Colletotrichum spp. on various cultivars. Pathogenicity results showed that C. acutatum is capable of infecting strawberry, and pathogenic variation could exist.

Results of our experiment indicate significant differences between all evaluated EO concentrations. Higher concentrations of EO show the inhibitory effect on strawberry pathogen C. acutatum.

Sarkhosh et al. (2018) found that T. vulgaris EO completely inhibited Colletotrichum spp. mycelial growth at a concentration of 100 μL L⁻¹ in avocado, mango and papaya fruits. According to another study by Sarkhosh et al. (2017), T. vulgaris EO concentration of 125 μL L⁻¹ completely inhibited Colletotrichum spp. in papaya fruits. Rodrigues et al. (2018) reported that different EO concentrations are suitable for C. musae control. Amini et al. (2012) observed antifungal activity of T. vulgaris EO against Botrytis cinerea, Aspergillus spp., Rhizoctonia solani and other pathogens. Foltinová et al. (2017) documented that T. vulgaris EO 100% inhibited the growth of tested isolates of Aspergillus flavus. The data of our experiment agree with those obtained by other researchers suggesting that T. vulgaris EO could be an effective biological agent to control Colletotrichum sp. until 6 DAI.

According to Scariot et al. (2016), S. officinalis EO has fungicidal activity against Alternaria spp. and Phakopsora pachyrhizi in beans. The data of our experiment indicate that S. officinalis EO did not demonstrate the high tendency of C. acutatum inhibition on strawberry. In comparison, the efficiency of S. officinalis and C. sativum EO against C. acutatum pathogen was very similar. Acimović et al. (2016) reported that C. sativum EO could inhibit colony growth by 90%. However, the highest concentrations of EO should be used. Mandal and Mandal (2015) reported that C. sativum EO at the 1500–2000 μg mL⁻¹ could be useful against Alternaria spp., Fusarium spp. and other pathogens.

The data of our experiment indicate that H. officinalis EO had a better antifungal effect than S. officinalis and C. sativum EO. Letessier et al. (2001) observed that H. officinalis EO at 0.4% concentration completely inhibited mycelial growth of pathogenic fungi Pyrenophora avenae and Pyricularia oryzae.

M. piperita EO had better antifungal activity against C. acutatum than S. officinalis, H. officinalis and C. sativum EO at 6 DAI. The literature review has shown that M. piperita EO can be used as a biological control product against strawberry anthracnose. Results show that M. piperita EO at a concentration of 1500 μL L⁻¹ gave complete mycelial growth inhibition (Sarkhosh et al., 2018). Based on the results of our experiment, it can be assumed that higher concentrations of M. piperita EO could effectively inhibit C. acutatum. Moghaddam et al. (2012) observed that M. piperita EO up to 1600 μL L⁻¹ could control Fusarium oxysporum f. sp. ciceris, Macrophoma phaseolina and Dreschlera spicifera.

The micelial growth inhibition of C. acutatum by T. vulgaris EO was evident; it has the potential to control strawberry anthracnose and could be considered for use as a biocontrol agent against fungal pathogens. However, further research is needed to evaluate higher EO concentrations. The T. vulgaris EO inhibitory effect was evaluated on the detached leaves of strawberry cultivar ‘Deluxe’.

In this study, five EO showed differing efficacy on C. acutatum. T. vulgaris EO was the most effective at the lowest concentration in in vitro experiments. However, in the assay of detached strawberry leaves, even at high concentrations T. vulgaris EO gave a slight disease severity reduction compared with the control-3 treatment at 4 DAI. M. piperita EO at higher concentration reduced disease severity compared with the control-3 and other EO treatments at 4 and 6 DAI. Oliveira et al. (2019) suggest that higher concentrations of EO are usually required in the experiments in vivo.

Conclusions

1. According to the pathogenicity screening, ‘Deluxe’ was the most susceptible cultivar to strawberry anthracnose, while ‘Rumba’ and ‘Elegance’ exhibited resistance.

2. The growth of Colletotrichum acutatum was reduced with the tested essential oils (EO) applied at the highest concentrations in vitro.

3. Thymus vulgaris EO caused 100% mycelial growth inhibition of C. acutatum at 200 μL L⁻¹ and higher concentrations in vitro.

4. Essential oils inhibited the mycelial growth of C. acutatum in vitro; however, the assay of detached strawberry leaves showed that the efficacy of EO is not sufficient.

As a result, further investigation, including higher EO concentrations, is needed.

Acknowledgements

This research was partly funded by the World Federation of Scientists, National Scholarship Programme.

Received 23 03 2020
Accepted 01 02 2021
Colletotrichum acutatum pathogeniškumas ir biokontrolė įvairių veislių braškėms panaudojus eterinius aliejus

A. Morkeliūnė, N. Rasiukevičiūtė, A. Valiuškaitė

Lietuvos agrarinių ir miškų mokslų centras

Santrauka

Colletotrichum spp. yra svarbus braškių patogenas, galintis iki 80 % sumažinti jų derlių. Dėl pakitusių agrometeorologinių sąlygų stebimas jo plitimas vėsio klimato šalyse. Kaip viena iš ekologiškų augalų patogenų Colletotrichum acutatum yra svarbus braškių patogenas, galintis iki 80 % sumažinti jų derlių. Dėl pakitusių agrometeorologinių sąlygų stebimas jo plitimas vėsio klimato šalyse.

Colletotrichum spp. yra svarbus braškių patogenas, galintis iki 80 % sumažinti jų derlių. Dėl pakitusių agrometeorologinių sąlygų stebimas jo plitimas vėsio klimato šalyse. Kaip viena iš ekologiškų augalų patogenų Colletotrichum acutatum yra svarbus braškių patogenas, galintis iki 80 % sumažinti jų derlių. Dėl pakitusių agrometeorologinių sąlygų stebimas jo plitimas vėsio klimato šalyse.