The effect of silicon and boron foliar application on the quality and shelf life of cherry tomatoes

Mohammad Zahirul ISLAM, Mahmuda Akter MELE, Ki-Young CHOI, Ho-Min KANG
Kangwon National University
Chuncheon 24341, Republic of Korea
E-mail: hominkang@kangwon.ac.kr

Abstract
Silicon (Si) alone or Si + boron (B) foliar sprays at the maturity stage of light red of the cherry tomato cultivar ‘Unicorn’ were examined to determine the effect on the quality and shelf life. The foliar applications that were utilized in this study were: 20 mM Si alone from silicon dioxide (SiO₂), 20 mM Si from SiO₂ with 4.85 mM B from boric acid (H₃BO₃) and distilled water as a control substance. The Si + B treatment resulted in the lowest respiration and ethylene production as recorded. The Si + B treated tomato fruits attained and retained the highest firmness as noted. Compared with the control, the Si + B treated fruits had less-soluble solids, higher titratable acidity, higher vitamin C content, and longer shelf life. The Si + B treated fruits and leaves had the highest Si and B content uptake. Therefore, Si + B foliar sprays increased and retained cherry tomato firmness, maintained soluble solids, maintained titratable acidity, increased the vitamin C content, prolonged shelf life, increased cell-wall compactness, and increased Si and B accumulation as noted in the study.

Key words: firmness, respiration, scanning electron microscopy, Solanum lycopersicum.

Introduction
Silicon (Si) is a “functional” plant nutrient, and its deficiency in crops has been recognized since the 1970s (Laing et al., 2006). Soluble Si is diffused in the form of mono silicic acid, Si(OH)₄ by the plant roots and it provides effective defences for the plant to counter the susceptibility to acquire diseases (Cote-Beaulieu et al., 2009). The Si may change the antagonistic activity of huge amounts of boron (B) (Kaya et al., 2011). The content of polyphenol oxidase and ascorbate peroxidase increased in Si treated melon (Conceicao et al., 2014). The Si induced resistance mechanisms to biotic and abiotic stresses without hampering growth and yield of the plants treated (Liang et al., 2015). Studies show that the firmness, water status, metabolic and physiological activities were noted as improved in the Si treated cucumber fruit (Ouzounidou et al., 2016).

Boron deficiency in agriculture is a widespread problem that reduces yield and fruit quality of affected fruit species (Barker, Pilbeam, 2007). The variation of fruit produce quality and yield depends on the produce variety, growing environment, and nutrient solution supplied and applied to the produce as it grows (Ercisli, Orhan, 2007). Studies show that boron can influence the cell wall and plasma membrane cell wall interface, metabolism, reproductive growth and development, and root elongation and shoot growth of a growing plant structure (Marschner, 2012). It is known that boron treatment can augment and enhance the quality of tomato and cucumber plants during growth stages (Ekinci et al., 2015).

Firmness is a substantial determinant for postharvest quality, because it extends the shelf life by modifying compactness or thickness of the tomato fruit cell-wall. Silicon or Si + B have the ability once applied to modify this result in the tomato fruit structure. In the current experiment, the reaction and consequence of Si alone or Si + B foliar sprays was examined, and the result helped to ascertain the quality and shelf life of cherry tomatoes.

Materials and methods
Plant growing conditions and treatments.
The cherry tomatoes (Solanum lycopersicum, cultivar ‘Unicorn’) were grown and cultivated using a nutrient film technique (NFT) system during the summer, while situated in the growing environment at a plastic house in Gangwon Province, Korea in 2014. The maturity-stage of light red was utilized to perform this experiment. The package size of the storage tomato was 34 × 24 × 13 cm. The storage temperatures for the tomatoes were 5 and 11°C with 85% relative humidity. A supplied nutrient for nourishing the tomatoes during the growth stages was based on the Japanese horticultural experiment station (Sato et al., 2006). The maintained electrical conductivity (EC) was 2.2 dS m⁻¹, and the potential of hydrogen (pH)
The effect of silicon and boron foliar application on the quality and shelf life of cherry tomatoes

The respiration and ethylene production rate at harvest time (20°C), 5°C (25th storage day) and 11°C (10th storage day) of Si alone and Si + B foliar spraying treatment of cherry tomato

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Respiration CO₂ ml kg⁻¹ hr⁻¹</th>
<th>Ethylene production rate µL kg⁻¹ hr⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>harvest 5°C 11°C harvest 5°C 11°C</td>
<td>harvest 5°C 11°C harvest 5°C 11°C</td>
</tr>
<tr>
<td>Control</td>
<td>2.58 a 0.75 a 0.91 a</td>
<td>4.17 a 3.27 a 2.05 a</td>
</tr>
<tr>
<td>Si</td>
<td>2.14 ab 0.65 a 0.84 ab</td>
<td>3.41 ab 2.63 ab 1.98 a</td>
</tr>
<tr>
<td>Si + B</td>
<td>2.02 b 0.41 b 0.75 b</td>
<td>3.17 b 2.51 b 1.46 b</td>
</tr>
<tr>
<td>P values</td>
<td>* *** * *</td>
<td>* *** * *</td>
</tr>
</tbody>
</table>

Note. The Duncan’s multiple range test was used for mean (n = 5) separation of columns; * and *** – significant at p ≤ 0.05 and 0.001, respectively.

Table 1. The respiration and ethylene production rate at harvest time (20°C), 5°C (25th storage day) and 11°C (10th storage day) of Si alone and Si + B foliar spraying treatment of cherry tomato

Results and discussion

Fruit physiology parameters. The study noted that the tomato fruit quality begins to deteriorate immediately after harvest due to a high respiration rate. A reduced level of respiration can help maintain the fruit quality and increase the shelf life of the tomato. The Si + B treated fruits showed a significantly (p ≤ 0.05) reduced respiration rate than the control fruits of light red maturity at harvest time (20°C). Moreover, Si + B treated fruits showed lower respiration rate at both storage temperatures of red maturity-stage cherry tomato than control fruits on the last storage day. These findings are in agreement with the results reported by Vunnam et al. (2014) that noted a respiration rate was satisfactory maintained by the maturity, growing atmosphere and tomato fruits surrounding the gas condition. At harvest time and during storage, the respiration of the tomato was suppressed by the Si + B treatment and this might have happened as a result of the subsequent cell-wall thickness of the study tomato fruits. The Kaluwa et al. (2010) study revealed that Si suppressed the respiration in similarity reviewed growth of avocadoes. It was noted that the use of boron suppressed the respiration of pears by improving their membrane integrity (Xuan et al., 2005). Among the treatments, Si + B showed the lowest respiration rate (Table 1); thus the Si + B treated tomato fruits had the longest shelf life.

Ethylene helps to ripen tomato fruits, and a decreased level of ethylene may be desirable to reduce the maturing procedure and increase the shelf life. At harvest time (20°C), the 5°C and 11°C stored cherry tomatoes showed a decreased ethylene production rate as compared to the control (Table 1). Moreover, the Si + B treated tomato fruits in 11°C storage showed a lower ethylene production rate than the control fruits. The Si + B foliar sprays may decrease the ethylene production of cherry tomatoes by maintaining respiration. The silicon application decreased the ethylene production rate in avocadoes (Kaluwa et al., 2010). In pears, B decreased the ethylene production rate by maintaining the membrane structure and its integrity (Xuan et al., 2005). Although harvest-time colour a*/b* value was not significantly different of tomato fruits as we selected the same maturity stage (data not shown), they significantly differed in ethylene production rate. The Si + B treated tomato fruits had the lowest ethylene production; it may be beneficial in prolonging the shelf life of cherry tomatoes.

Fruit quality parameters. Firmness is a fundamental feature of the cultivated cherry tomato, and it reduces gradually over time especially in storage conditions.

Scanning electron microscopy (SEM). The Si and B contents as applied to the plants were measured according to Simsek and Aykut (2007) with the help of inductively coupled plasma (ICP) – atomic emission spectroscopy (AES) Integra XL Dual (GBC Scientific Equipment Pty Ltd., Australia) succeeding astringent assimilation, and the result was recorded like a concentration (mg kg⁻¹ dry weight).

Statistical analysis. Data was analyzed by the utilization of the statistics software SPSS V.16 (SPSS Inc., USA). The Duncan’s multiple range test of the one-way analysis of variance (ANOVA) was used to analyze the mean significant differences of all tomato fruits utilized and monitored in the study.
facilities. The extended firmness of the cherry tomato fruit is desirable for long-time storage and possible logistical transportation. The firmness increased by Si + B treated tomato fruits at harvest time was significant and the tomato fruits retained their firmness with this application even after storage (Table 2). The Si + B foliar sprays influenced firmness, because the minerals may cross-link the pectin molecules in plant cell-walls and the metal binding’s cell-wall structure stabilize by the pectin web in the case of this study. The Si treatment expanded tomato firmness (Weerahewa, David, 2015) and B-treated pear fruits have been shown to become firmer (Khalaj et al., 2017) which is definite beneficial growing factor for producers of these fruit products. Moreover, the Si + B treated fruit showed the highest firmness at harvest time (20°C), and it was retained after storage due to decreased respiration and ethylene production. The Xuan et al. (2005) study reported that the application and B treatment delayed the damage of fruit tissue and reduced the disorder in similarly situated cultivated fruits during harvest times.

Table 2. The cherry tomato firmness, soluble solids, titratable acidity and vitamin C at harvest time (20°C), 5°C (25th storage day) and 11°C (10th storage day) of Si alone and Si + B foliar spraying treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Firmness N</th>
<th>Soluble solids °Brix</th>
<th>Titratable acidity, % citric acid</th>
<th>Vitamin C mg 100 g⁻¹ FW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>18.18 b</td>
<td>9.01 b</td>
<td>7.10 a</td>
<td>7.81 a</td>
</tr>
<tr>
<td>Si</td>
<td>20.73 ab</td>
<td>10.64 ab</td>
<td>7.27 a</td>
<td>7.46 ab</td>
</tr>
<tr>
<td>Si + B</td>
<td>22.78 a</td>
<td>13.96 a</td>
<td>6.66 b</td>
<td>7.21 b</td>
</tr>
<tr>
<td>P values</td>
<td>***</td>
<td>**</td>
<td>***</td>
<td>***</td>
</tr>
</tbody>
</table>

Note. FW – fresh weight; the Duncan’s multiple range test was used for mean (n = 10) separation of columns; *, ** and *** – significant at p ≤ 0.05, 0.01 and 0.001, respectively.

Both at harvest time and after storage, the Si + B treated tomato fruits showed less soluble solids compared with control (Table 2), and this might have happened as a result of slower respiration and ethylene production. As B transports sugar through the formation of borate-sugar complexes in higher plants (Marschner, 2012), there may be a case resulting in the less soluble solids in B treated fruits at harvest time. Si-treated tomatoes also had less-soluble solids as noted in the fruit growth statistics (Weerahewa, David, 2015). Additionally, it is noted that during storage, soluble solids increased perhaps due to conversion of starch to sugar (Khalaj et al., 2017).

The cherry tomato fruit treated with Si + B had a higher titratable acidity at the harvest time and after storage compared to the control (Table 2), which could be attributed to low respiration rate, low metabolic activities to increase the shelf life. During storage, it is noted that the titratable acidity decreased in B treated pears (Khalaj et al., 2017). Consequently, fruits treated with Si + B foliar sprays showed the highest titratable acidity among the treatments due to the smallest respiration content, including the factors of less-ethylene production, and less-soluble solids.

By the same light, Si + B treatment showed the highest vitamin C at harvest time and after storage, thereby noting the control recorded the lowest vitamin C (Table 2). The Si + B treatment on the tomato fruits showed the highest vitamin C because of lower metabolic activities. The B-treated pomegranate showed the highest vitamin C content (Korkmaz et al., 2016). The Si + B foliar sprays had the greatest effect on the vitamin C content. Moreover, the vitamin C content variation also depended on the tomato cultivar (Guil-Guerrero, Rebolloso-Fuentes, 2009), Si + B treatments, temperature and maturity stages.

Fresh weight loss. Because of the fruits’ moisture loss from respiration, the stored tomato fruits fresh weight loss rate increased when weighed and reviewed. The pre-harvest foliar sprays in strawberries studied did not show any differences in fresh weight loss (Singh et al., 2007), but our results for the Si alone and Si + B treatments were significantly different in the cherry tomatoes reviewed in this study. The Si + B treated tomato fruits showed the lowest fresh weight loss compared to the control (Fig. 1). Moreover, at 5°C, the stored tomatoes showed less fresh weight loss than at 11°C; therefore, the Si + B treatment and 5°C temperature significantly reduced the fresh weight loss of cherry tomatoes by reducing the respiration.

Visual quality. Tomato fruits’ market price usually depends on the visually high quality of the fruits. Therefore, good visual quality fruits are preferable to sellers, buyers and consumers in all buying markets. The Si + B treated fruits at 5°C and 11°C storage had the best visual quality of the fruits tested in this study. The marketable, good visual tomato quality or shelf life (≥3) was maintained for 14 days (control), 16 days (Si alone) and 19 days (Si + B) at 5°C based on an observation scale. Moreover, at 11°C storage cherry tomatoes’ shelf life was 6 days (control), 8 days (Si alone) and 9 days (Si + B) treatment (Fig. 2). The Si + B foliar sprays retained visual quality, improved the shelf life, and maintained the fruit freshness by suppressing respiration and reducing internal breakdown. The silicon treatment also resulted in a better visual quality than in the control as noted and reviewed in this study.

The Si reduced deterioration of cucumber by maintaining membrane integrity (Ouzounidou et al., 2016). B reduced the susceptibility of nectarine fruit rots caused by brown rot (Thomidis et al., 2017). These treatments retained the tomatoes’ visual quality, improved their shelf life, and maintained freshness for a longer period of time. The Si + B foliar sprays resulted in the longest shelf life of cherry tomatoes at both 5°C and 11°C by maintaining freshness.
The effect of silicon and boron foliar application on the quality and shelf life of cherry tomatoes

Scanning electron microscopy (SEM). The Si + B foliar sprays resulted in more-compact tissue compared to the control tomato fruits, because those treatments used a Si + B composition in the cell-wall structure, thus, decreasing the intercellular spaces and increasing the compactness and firmness. The highest cell-wall thickness was found in the Si + B treated fruits, followed by Si alone and the control (Fig. 3). The Si treatment resulted in more-compact tissue (Bae et al., 2010), and B improved the membrane integrity and cell-wall formation in pears (Khalaj et al., 2017). The cell walls were thicker in the treated tomatoes, indicating that the Si alone and Si + B treatments increase the cell-wall thickness, membrane integrity and cell-wall formation and, therefore, resulted in an increase in the fruits’ shelf life.

Fruit and leaf Si and B content analysis. The Si + B foliar sprays resulted in higher Si and B content compared to the control and it probably happened due to greater assimilation of Si and B in the fruits and leaves. The B treatment increased the B content in cucumbers and in tomatoes (Kaya et al., 2011; Ekinci et al., 2015). As the tomato plants accumulated higher Si and B contents, the cell-wall thickness, fruit firmness and shelf life increased (Table 3).

Table 3. The silicon (Si) and boron (B) content (mg kg⁻¹ dry weight) in fruit and leaf of cherry tomato of Si alone and Si + B foliar spraying treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Si</th>
<th>Leaf</th>
<th>Si</th>
<th>Leaf</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>267.09 b</td>
<td>332.90 b</td>
<td>5.71 b</td>
<td>70.52 b</td>
</tr>
<tr>
<td>Si</td>
<td>284.55 a</td>
<td>339.52 ab</td>
<td>6.21 ab</td>
<td>72.94 b</td>
</tr>
<tr>
<td>Si + B</td>
<td>289.84 a</td>
<td>347.74 a</td>
<td>7.11 a</td>
<td>97.53 a</td>
</tr>
</tbody>
</table>

Note. The Duncan’s multiple range test was used for mean (n = 5) separation of columns; *, ** and *** – significant at p ≤ 0.05, 0.01 and 0.001, respectively.
Conclusion

The effects of foliar spraying of silicon (Si) or Si + boron (B) were investigated to confirm the quality and shelf life of cherry tomatoes. The application of Si + B treatment showed lower respiration, less ethylene production, increased firmness, increased cell-wall compactness, and accumulated maximum B and Si content compared with Si treatment or control tomato fruits. The application of Si + B treatment also had a prolonged shelf life. This treatment could result in grower, seller, buyer, and/or consumer increased satisfaction and overall appreciation with cherry tomato fruit quality and economic value in produce-based markets in the region.

Acknowledgements

This research was supported by Export Promotion Technology Development Program (314027-3), IPET (Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries), Ministry of Agriculture, Food and Rural Affairs, Republic of Korea.

Received 13 05 2017
Accepted 19 09 2017

References

The effect of silicon and boron foliar application on the quality and shelf life of cherry tomatoes

ISSN 1392-3196 / e-ISSN 2335-8947

Vyšninių pomidorų purškimo per lapus silicium ir boru įtaka vaisių prekinei kokybei

M. Z. Islam, M. A. Mele, K.-Y. Choi, H.-M. Kang
Kangvono nacionalinis universitetas, Korėjos Respublika

Santrauka
Tyrimo metu siekta nustatyti silicium (Si) arba Si + boro (B) mišinių, kuriais per lapus buvo purkštė šviesiai raudonas brandos veisles – ‘Unicorn’ vyšninių pomidorų, įtaką vaisių kokybei ir tinkamumo vartoti laikotarpiui. Per lapus purkštą 20 mM Si (SiO₂), 20 mM Si (SiO₂) + 4.85 mM B (H₃BO₃) ir distiliuotų vandeniu (kontrolinis variantas). Nupurškus Si + B mišiniui buvo nustatyta mažiausia respiracija ir etileno sintezė. Didžiausią kietumą pasiekė ir išlaikė pomidorų vaisiai, nupurškites Si + B mišiniui. Palyginus su kontroliniu variantu, Si + B mišiniui nupurškites vaisiai turėjo mažiau tirpinių kietųjų dalelių, didesnį tirpinių vitaminų C ir ilgesnį vartojimo laiką. Si + B mišiniui nupurškites per lapus padidino ir išlaikė vyšninių pomidorų kietumą, tirpinių kietųjų medžiagų kiekį, tirpinių vitaminų C kiekį, pailgino vartojimo laiką, padidino laštelės sienelės kompaktiškumą ir Si bei B kaupimąsi.