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Abstract
Water stress is one of the most important growth limiting factors in crop production. Several methods have been 
used to detect and evaluate the effect of water stress on plants. The use of remote sensing is deemed particularly 
and practically suitable for assessing water stress and implementing appropriate management strategies because 
it presents unique advantages of repeatability, accuracy, and cost-effectiveness over the ground-based surveys 
for water stress detection. The objectives of this study were to 1) determine the effect of water stress on sweet 
corn (Zea mays L.) using spectral indices and chlorophyll readings and 2) evaluate the reflectance spectra using 
the classification tree (CT) method for distinguishing water stress levels/severity. Spectral measurements and 
chlorophyll readings were taken on sweet corn exposed to four levels of water stress with 0, 33, 66 and 100 % of 
pot capacity (PC) before and after each watering time. The results demonstrated that reflectance in the red portion 
(600–700 nm) of the electromagnetic spectrum decreased and increased in the near infrared (NIR) region (700–900 
nm) with the increasing field capacity of water level. Reflectance measured before the irrigation was generally 
higher than after irrigation in the NIR region and lower in the red region. However, when the four levels of PC 
and before or after irrigation only were compared, reflectance spectra indicated that water stressed corn plants 
absorbed less light in the visible and more light in the NIR regions of the spectrum than the less water stressed 
and unstressed plants. There was a similar trend to reflectance behaviour of water stress levels using chlorophyll 
readings that decreased over time. The CT analysis revealed that water stress can be assessed and differentiated 
using chlorophyll readings and reflectance data when transformed into spectral vegetation indices. 
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Introduction 
Water is an important factor in agricultural and 

food production yet it is a highly limited resource and 
is becoming increasingly more important over time for 
optimal crop production (O’Shaughnessy et al., 2011; 
Wang et al., 2012). Therefore, research on irrigation and 
water management has focused on crop yield responses to 
water supply (Chen et al., 2010 a; Köksal, 2011). The use 
of remote sensing for irrigation practices, water resource 
management, and disease and insect management has 
been largely investigated (Ozdogan, 2011; Elmetwalli 
et al., 2012). The spectral characteristics of healthy 
vegetative surfaces are distinctive with low reflectance 
in blue, high in green, very low in red and very high 
in the near infrared (NIR). The overall reflectance of 

water in the visible region (400–700 nm) is relatively 
low and in the NIR (700–900 nm) it is practically zero 
(Rock et al., 1986; Gitelson, Merzlyak, 1996; Sims, 
Gamon, 2002). Extensive research has been conducted 
to study pigment concentration of plants using spectral 
reflectance under various environmental conditions and 
stresses (Blackburn, 2007). 

A large number of vegetation and water indices 
has been developed to measure plant vigour and other 
biophysical parameters using remotely sensed data 
(Rodríguez-Pérez et al., 2007; Chen et al., 2010 b; 
Elsayed et al., 2011). Hunt and Rock (1989) indicated 
that leaf water content index measures leaf relative water 
content directly and can be used to determine when 
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certain plant species with different leaf morphologies are 
water stressed. Rodríguez-Pérez et al. (2007) reported that 
noninvasive monitoring using hyperspectral vegetation 
indices could improve current traditional methods for 
estimating water status of individual vines. Spectral 
vegetation indices were designed to evaluate vegetation 
condition, foliage, cover, phenology and processes in 
addition to be used for land cover classification, climate 
and land use detection, drought monitoring and habitat 
loss (Padilla et al., 2011) More recently, Mirik et al. 
(2012) discussed that spectral vegetation indices are 
mathematical expressions involving reflectance values 
from different part of the electromagnetic spectrum, aimed 
to optimize information and normalize measurements 
made across varied environmental conditions. Varied 
environmental conditions include differences in plant 
species, solar angle, shadowing, illumination, canopy 
coverage, soil background, atmospheric condition and 
viewing geometry of the device over space and time. 

Since there are many water absorption and 
reflection features in the red and NIR parts of the 
electromagnetic spectrum, analysis of spectral reflectance 
has resulted in several useful water indices (Serrano 
et al., 2000). A few water indices developed to study crop 
stress include the water band index (WBI) proposed by 
Peñuelas et al. (1993), shortwave infrared water stress 
index (SIWSI) developed by Fensholt and Sandholt 
(2003), and normalized difference water index (NDWI) 
of Gao (1995) and Serrano et al. (2000). In addition to 
these indices, some of the other vegetation indices or 
spectral waveband ratios are also important indicators to 
determine and detect water stress in vegetation. 

In addition to vegetation indices, many statistical 
and mathematical models such as principle component 
analysis (Genc, 2003), random forest, support vector 
machine, artificial neural network, and other classification 
procedures have been developed to extract optimal 
information from remotely sensed data. Classification tree 
(CT) was developed to investigate the relationship between 
the categorical data and determine the variables affecting 
other independent variables (Yohannes, Hoddinott, 1999). 
Researchers observed that the CT was a very useful model 
to analyze complex data sets by providing visual results 
(Camdeviren et al., 2005). 

Several researchers discussed that remote 
sensing removes human bias in visual stress severity 
evaluation that can be highly variable among individuals. 
In addition, remote sensing is a better method to detect 
and quantify the impact of plant stress compared to visual 
techniques because a vegetative unit can be repeatedly, 
objectively, and nondestructively examined in a fast, 
robust, accurate, and inexpensive way (Mirik et al., 
2006; 2012; Elsayed et al., 2011). The objectives of our 
study were 1) to examine the use of spectral reflectance 
characteristics and chlorophyll readings to discern water 
stress severity imposed with four irrigation levels (0, 33, 
66 and 100 % of pot capacity (PC) on sweet corn (Zea 
mays L.) grown in controlled conditions and 2) to explore 
the effectiveness of CT for discriminating water stress 
severity using spectral indices before and after irrigation. 

Materials and methods
Experimental design. Sweet corn (‘Merit F1’) 

was planted into pots containing a mixture of field soil 
and turf with a pH of 7.2 as the growth medium on 
November 27, 2007 and harvested on February 11, 2008 
in this research. The experiment was designed by using 
four sets of potted plants with three replicates. Six litre 
pots were stored in the controlled laboratory at 26–28°C 
and 60–70% relative humidity with a 16:8 hour photo 
period. Four watering levels were designed by controlling 
soil water contents at 0 (no irrigation), 33, 66 and 100% 
(full irrigation or control) of pot capacity (PC). In the 
beginning, all pots were watered to the PC to facilitate 
uniform germination. All pots were weighed and watered 
nine times during the period from November 27, 2007 
to February 11, 2008 to base on the designed water 
levels. Watering periods were 14, 21 and 28 December 
2007, 4, 11, 18 and 25 January 2008, 1 and 8 February 
2008. During the experiment, water was added to 0 (no 
irrigation), 33, 66 and 100 % PC pots as 0, 1.92, 3.67, and 
6.10 L per pot-1, respectively. 

Chlorophyll and spectral measurement. In this 
study, leaf chlorophyll content was measured using a 
hand-held chlorophyll meter “Fieldscout CM1000” 
(“Spectrum Technologies Inc.”, USA) and spectral 
data was collected using “FieldSpect” hand-held field 
spectroradiometer (“Analytical Spectral Devices Inc.”, 
USA). The spectroradiometer was equipped with a 10° 
field of view. Spectral reflectance was obtained from 
three different parts on the same leaf. In each location 
of selected leaf, five readings were taken that were 
automatically averaged and reported. Spectral reflectance 
were measured before and 72 hours after irrigation. 
The first measurement was made 10 days after sowing 
(December 7). The measurements for before irrigation 
from individual pot were made and used to determine 
spectral indices as follow: 14 and 28 December 2007, 
11 and 25 January 2008 and 8 February 2008. The 
measurements after irrigation were made as follows: 17 
and 31 December 2007, 14 and 28 January 2008 and 11 
February 2008 which was at the end of the experimental 
period (76 days after sowing). The spectroradiometer 
was calibrated with a plate made of barium sulphate 
before each measurement. A halogen light, 15 V and 4.6 
A, at a 45 degree angle was used as the energy source 
to measure leaf reflectance and chlorophyll readings. 
Chlorophyll readings and spectral measurements were 
taken from the three parts of the same leaves. Using the 
reflectance data, five vegetation indices were computed 
and used to distinguish water stress severity in CT model. 
Vegetation indices and ratio of wavebands used in this 
study are provided in Table 1. 

Statistical analysis. The CT method described 
in detail by Lewis (2000) was used to differentiate the 
water stress using the following formula: 

 	
is satisfied for all the 

values of j (j = 1, 2,…,k and j≠i), 
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where C(j/i) – cost of classification of class 
i as if class j (coefficient of the risk matrix), πi – prior 

Results and discussion
Chlorophyll. The chlorophyll readings 

decreased after irrigation for all dates when samples 
were taken as illustrated in Figure 1. We observed that 
chlorophyll readings of sweet corn under water stress 
with 0% and 33% PC were also less than those of 66% 
and 100% PC. It appears that chloroplast concentration 
increases in stressed plants relative to unstressed plants. 
We found that chlorophyll readings decrease as the corn 
approaches the maturity. 

Figure 1. Comparison of water stress level and 
chlorophyll concentration before irrigation (BI) and after 
irrigation (AI) 

The presence of a disease, insect feeding or 
deficiency in growth limiting factors such as water stress 
leads to change in chemical-pigment concentrations, leaf 
area, and cell structure of the affected plant tissues (Mirik 

et al., 2012). A decrease in chlorophyll amount from water 
stressed plants provided evidence that water deficiency 
degraded the photosynthetic pigments and changed the 
leaf morphology in corn canopies. Elsayed et al. (2011) 
reported that water deficiency causes alteration in leaf 
pigment composition, concentration, and cell structure by 
changing the properties of connections between air spaces 
and cell walls, cell wall composition and structure or cell 
size and shape. It is apparent in our study that observed 
reductions of chlorophylls in 0% and 33% PC were as a 
result of water stress. Leaf chlorophyll content decreases in 
water stressed plants (Govender et al., 2009). The authors 
also indicated that reduced chlorophyll content in plants 
is directly related to water stress leading to change in 
chlorophyll to carotenoid and chlorophyll a to chlorophyll 
b ratios that are an indicator of water stress. Alberte et 
al. (1977) found that the majority of chlorophyll lost in 
response to water stress occurred in the mesophyll cells 
with a lesser amount being lost from the bundle sheath 
cells. Increasing severity of water stress clearly reduced 
the photochemical activity of chlorophyll, absorption of 
nutrients by corn roots, and nutrient transportation from 
root to shoots (Elmetwalli et al., 2012). 

Spectral analysis. After investigating spectral 
reflectance of corn leaves, it was found that reflectance 
values from all dates showed similar pattern. Since all 
reflectance values showed similar pattern, January 11 
when spectral measurement was made before irrigation 
and January 14 when spectral measurement was made 
after irrigation were further investigated (Figs 2 and 

Figure 2. The average values of spectral reflectance from sweet corn in January 11 before irrigation (BI) and January 
14 after irrigation (AI): a) BI at all field capacities, b) AI at all field capacities 

probability of the class i, Ni – number of the experiment 
units in i class in the learning sample. 

Table 1. Spectral indices and ratio of spectral wavebands used to differentiate water stress in sweet corn 

Index Abbreviation Formula Reference
Normalized difference vegetation index NDVI (NIR − R) / (NIR + R) Rouse et al. (1973)

Green NDVI GNDVI (NIR − G) / (NIR + G) Gitelson, Merzlyak (1996)
Simple ratio SR R / NIR Jordan (1969)

Ratio between blue and NIR BN B / NIR this study
Ratio between green and NIR GN G / NIR this study

Ratio between red + green and NIR RGN (R + G) / NIR this study

NIR – reflectance in near infrared, R – reflectance in red, G – reflectance in green, B – reflectance in blue regions of the spectrum 

a b



84
Determination of water stress with spectral reflectance on sweet corn (Zea mays L.)                                           

using classification tree (CT) analysis 

3). Spectral reflectance of corn varied with water stress 
levels and changed before and after irrigation (Fig. 2 a 
and b). Before irrigation, the reflectance of corn in the 
NIR region decreased with decreasing irrigation levels 
(Fig. 2 a). After irrigation, spectral measurement showed 
that the reflectance of corn increased for 33%, 66% and 
100% irrigation level compared to before irrigation (Fig. 
2 b). There was no noticeable change for 0% water levels 
before and after irrigation. Before irrigation, in the visible 
region of the spectrum, the reflectance was slightly 
higher and stayed very close in the NIR region for 0% PC 
when compared to measurements made after irrigation as 

shown in Figure 3 a. When water amount increased from 
0% to 33% PC, the reflectance between 500 and 600 nm 
and in the NIR around 750 nm after irrigation was higher 
than that of before irrigation, while the reflectance in the 
remaining portions of the spectrum was close to each 
other (Fig. 3 b). When watering level was increased from 
33% to 66% PC, reflectance trend changed slightly less 
before irrigation than after irrigation (Fig. 3 c) in the 
visible region from 400 to 500 nm and the NIR region 
from 750 to 900 nm. Increasing water level from 66% to 
100% PC, there was a trend in reflectance that was very 
similar to what we observed for 33% PC (Fig. 3 d). 

Figure 3. The average values of spectral reflectance from sweet corn: a) comparison of spectral reflectance before and 
after irrigation for 0% field capacity, b) comparison of spectral reflectance before and after irrigation for 33% field 
capacity, c) comparison of spectral reflectance before and after irrigation for 66% field capacity, d) comparison of 
spectral reflectance before and after irrigation for 100% of field capacity in January 11 (BI) and January 14 (AI) 

For all water application levels, reflectance 
values between 550 and 800 nm before irrigation were 
higher than after irrigation except for the 680 nm where 
reflectance values before irrigation were lower than after 
irrigation. This demonstrates that the chlorophyll content 
of the corn leaves was higher before irrigation than after 
irrigation. Reflectance at water sensitive wavebands 
(940–970 nm) before irrigation was slightly higher than 
after irrigation. When only before or after irrigation for 
four levels of PC compared, unstressed corn plants with 
increasing level of water deficiency (e.g., 33% PC) had 
lower reflectance in the visible spectrum and higher 
reflectance in the NIR region of the spectrum than those 
of unstressed plants (100% PC). 

We observed that these results in the visible 
and NIR regions of the spectrum were closely agreed 

with the findings of other studies reported earlier. In 
this region, water stressed corn had higher reflectance 
than unstressed corn in the visible spectrum in contrast 
to much higher reflectance from unstressed plants when 
compared to lower reflectance from stressed plants in the 
NIR spectrum (Elmetwalli et al., 2012). Elmetwalli et al. 
(2012) also observed that water stressed wheat (Triticum 
aestivum L.) canopy had higher reflectance in the visible 
region and lower reflectance in the NIR regions when 
compared to unstressed wheat canopy. Weber et al. 
(2012) observed similar response of water stressed corn 
to those of Elmetwalli et al. (2012) and our study. Our 
results were slightly different from those of Elmetwalli 
et al. (2012) that water stressed plant could not quickly 
enough respond to watering to recover. Another reason 
for difference is that Elmetwalli et al. (2012) conducted 

a c

b d
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their study at canopy scale, whereas our study was 
conducted at leaf level or corn varieties used in both 
studies. The slight difference in reflectance values before 
and after irrigation at four PC are most likely related to 
short watering time period when spectra were measured 
that stressed corn plants could not take advantage of 
watering to recover. The change in leaf morphology and 
leaf pigment concentrations and amount have a strong 
influence on leaf spectral properties. Water induced stress 
in corn leaves resulted in optical differences between 
stressed and unstressed plants. Apparently, the reduction 
in pigment concentrations, in addition to change in leaf 
morphology induced by deficiency in water availability 
caused higher reflectance in the visible spectra between 
stressed and unstressed corn leaves and before and after 
watering at four watering treatments. Symptoms due to 
water deficiency, in addition to leaf senescence, were 
often related to the decrease in NIR reflectance spectra. 
In the present study, lower reflectance spectra in the NIR 
region from stressed leaves when compared to lesser 
stress or unstressed corn leaves indicate that water stress 
also reduced green leaf area. 

Classification tree analysis. Before irrigation. 
In order to determine the water stress severity before 
irrigation, normalized difference vegetation index (NDVI), 
green normalized difference vegetation index (GNDVI), 
red/NIR (RN), blue/NIR (BN), green/NIR (GN), and red + 
green/NIR (RGN) were investigated in CT paths (Fig. 4). 
The CT analysis revealed that classification accuracy for 
before irrigation was 63.1% (Table 2). 

Table 2. Classification accuracy between observed and 
predicted values for sweet corn grown under four levels 
of water treatment before irrigation 

Observed
Predicted

irrigation level correct 
%0 33 66 100

0 14 1 3 3 66.7
33 3 13 3 2 61.9
66 3 2 14 2 66.7
100 3 3 3 12 57.1

Overall correct % 24.4 22.6 27.4 22.6 63.1

Among the indices, CT model selected GNDVI 
as a starter index to predict the water stress (Fig. 4). It 
was calculated that there was no water stress in 63.2% 
of the plants when GNDVI was ≤0.5509 and GN was 
≥0.1446 in full irrigation. On the other hand, if the GN 
was smaller than 0.1446, the chlorophyll readings must 
be taken into consideration to understand the water stress 
levels. Severe water stress could be expected in 60.0% 
of the plants at no irrigation level (0% PC) if chlorophyll 
reading was ≤174.5. In contrast, water stress was not 
expected at 66% PC if chlorophyll reading was ≥174.5 in 
full irrigation (Fig. 4). 

For further water stress determination, the other 
branch of the CT was examined. It was investigated that 

when GNDVI value was >0.5509 and chlorophyll value 
was <158.4, severe water stress could be expected in 
62.5% of plants at no irrigation pots. Similarly, when 
the chlorophyll value was higher than 158.4, additional 
indices or spectral ratios such as BN, RN and RGN were 
taken into account to determine water stress in corn. 
In this study, when chlorophyll value was >158.4, BN 
ratio should be considered to determine whether water 
stress existed or not. When BN value was >0.6350 water 
stress was not expected because all the values for BN 
fell into 66% treatment (Fig. 4). As the BN value was 
≤0.635, moderate water stress (51.9% of the plants) was 
projected at 33% water treatment. Furthermore, there was 
moderated water stress while BN value was ≤0.635 and 
RN value was >0.1625 (Fig. 4). However, when RN value 
was ≤0.162, RGN was an indicator to investigate further 
whether water stress existed or not. When RGN value was 
≤0.2546, water stress was not expected (75.0%). Under the 
same level of irrigation, when RGN value was >0.2546, a 
severe water stress could be expected (54.5%) (Fig. 4). 

After irrigation. Classification accuracy after 
irrigation was fount as 65.5% (Table 3). 

Table 3. Classification accuracy between observed and 
predicted values for sweet corn grown under four levels 
of water treatment after irrigation 

Observed
Predicted

irrigation level correct 
%0 33 66 100

0 18 2 0 1 85.70
33 8 12 0 1 57.10
66 6 5 7 3 33.30
100 2 1 0 18 85.70

Overall correct % 40.50 23.80 8.30 27.40 65.50

It was observed that GNDVI was the main 
indicator to determine the water stress in corn plant as 
was before irrigation (Fig. 5). There was no water stress 
in 100% of the plants when GNDVI value was <0.6304 
and NDVI values were >0.8020. Figure 5 shows that 
when NDVI was ≤0.8020, GN was an effective index 
for remote detection of water stress. When GN value 
was >0.2550, we found that there was no water stress in 
85.7% of the corn plants at 66% and 100% PC. When the 
GN value was <0.2550, the chlorophyll levels of these 
plants led to remote assessment of water stress. Severe 
water stress could be expected in 54.5% of the plants at no 
irrigation pots (0% PC) when chlorophyll reading value 
was ≤186.1. In contrast, water stress was not projected at 
66% PC and full irrigation pots when chlorophyll reading 
was ≥186.1 (Fig. 5). 

In order to further determine water stress 
levels, the second branch of the CT was examined (Fig. 
5). When GNDVI was >0.6304 and GN was >0.1956, 
severe water stress could be projected in 52.2% of plants 
at no irrigation pots. When the GN value was >0.1956, 
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Figure 4. Classification tree for sweet corn exposed to four levels of water treatment before irrigation 
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Figure 5. Classification tree for sweet corn exposed to four levels of water treatment after irrigation 
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chlorophyll readings played a key role to determine water 
stress. When chlorophyll reading value was higher than 
206.45, severe water stress could be projected in 100% 
of plants (66% PC). Furthermore, there was a moderate 
water stress in 60% of plants while chlorophyll value was 
smaller or equal to 206.45 (Fig. 5). 

Presence of any stressor in plant species, either 
biotic or abiotic, is known to alter spectral properties of 
infected tissue. Reflectance properties of plants depend 
in part on the amount of water stored in the leaf cells, 
in particular in the NIR (Rodríguez-Pérez et al., 2007; 
Govender et al., 2009). For water sensitive regions of the 
spectrum, leaf and canopy reflectance decreases with 
increasing leaf water content, while an opposite trend 
occurs for the insensitive spectrum (Rodríguez-Pérez 
et al., 2007). Water sensitive wavelengths were combined 
in various ways to develop vegetation indices in order 
to quantify water deficiency or drought. Detection and 
quantification of water stress using spectral vegetation 
indices may substantially improve stress monitoring 
and water management by overcoming some of the 
shortcomings of traditional methods such as time 
requirement, subjective measurements and sampling 
procedures (Rodríguez-Pérez et al., 2007; Elsayed et al., 
2011). In our study, spectral vegetation indices derived 
from hyperspectral reflectance spectra were used in CT 
to assess water stress in corn plants. Overall success 
rate of classification accuracy between predicted and 
measured values of stressed corn indicated that GNDVI 
has potential to determine water stress. Delalieux 
et al. (2007) used hyperspectral data in tree-based 
classification to detect disease in apple (Malus spp.) 
leaves and concluded that hyperspectral reflectance 
spectra were able to determine disease incidence in 
apple leaves. The advantage of tree-based classification 
includes that it does not require the assumption of 
probability distribution, specific interactions can be 
detected without previous inclusion in the model, non-
homogeneity can be taken into account, mixed data types 
can be used and dimension reduction of hyperspectral 
datasets is facilitated (Delalieux et al., 2007).

In addition, Goel et al. (2003) indicated that 
another benefit with decision tree is the formulation of 
simple and clear classification rules. The author reported 
that misclassification rates were 22% for nitrogen stress 
determination in corn using hyperspectral data. The same 
authors indicated that decision tree classification methods 
of hyperspectral data have potential for crop condition 
assessment. 

Conclusion
We tested the ability of classification tree 

algorithm to assess water stress in corn using hyperspectral 
reflectance spectra transformed into spectral vegetation 
indices. The results of this study demonstrated that water 
stress in corn was detectable through spectral reflectance 
analysis.  Water stress levels applied in this study clearly 
caused variation in the spectral reflectance and chlorophyll 

reading before and after irrigation. Chlorophyll readings 
and spectral reflectance that measured from crops before 
and after irrigation have potential to understand water 
stress in detail. It was found that the most effective index 
to determine water stress using classification tree (CT) 
model was green normalized difference vegetation index 
(GNDVI) for sweet corn. 
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Santrauka 
Drėgmės stresas yra vienas svarbiausių augimą ribojančių veiksnių augalininkystėje. Siekiant nustatyti drėgmės 
streso poveikį augalams, taikoma keletas metodų. Nustatant drėgmės stresą itin tinkamu ir praktišku laikomas 
nuotolinių jutiklių metodas. Jį tinkamai taikant yra svarbių pranašumų, palyginus su drėgmės streso nustatymu 
antžeminio stebėjimo būdu, pavyzdžiui, pakartojamumas, tikslumas, išlaidų efektyvumas. Tyrimo tikslai: 
1) nustatyti drėgmės streso įtaką paprastajam kukurūzui (Zea mays L.), taikant spektrinių rodiklių ir chlorofilo kiekio 
duomenis; 2) įvertinti atspindžio spektrus pagal klasifikavimo medžio metodą, siekiant nustatyti drėgmės streso lygį. 
Kukurūzų spektriniai ir chlorofilo matavimai buvo atlikti prieš kiekvieną laistymą ir po jo taikant keturis drėgmės 
streso lygius: 0, 33, 66 ir 100 % vegetacinio indo drėgmės imlumo. Tyrimo rezultatai parodė, kad didinant lauko 
vandens imlumo lygį, atspindys raudonojoje (600–700 nm) elektromagnetinio spektro dalyje sumažėjo, o artimoje 
infraraudonajai dalyje (700–900 nm) padidėjo. Prieš drėkinimą pamatuotas atspindys dažniausiai buvo didesnis, 
palyginus su po drėkinimo artimoje infraraudonajai dalyje, ir mažesnis raudonojoje dalyje. Tačiau palyginus vien 
tik keturis vegetacinio indo vandens imlumo lygius prieš ir po drėkinimo, atspindžio spektrai parodė, kad kukurūzų 
augalai, patiriantys drėgmės stresą, sugėrė mažiau šviesos matomojoje ir daugiau šviesos artimai infraraudonajai 
spektro dalyse, palyginus su mažiau streso patiriančiais ir jo nepatiriančiais augalais. Panaši drėgmės streso lygių 
išraiškos tendencija nustatyta naudojant chlorofilo matuoklio duomenis, kurie tyrimo metu mažėjo. Klasifikavimo 
medžio analizės rezultatai atskleidė, kad drėgmės stresą ir jo lygį galima nustatyti naudojant chlorofilo matuoklio 
ir atspindžio duomenis, juos pavertus į spektrinius augmenijos rodiklius. 

Reikšminiai žodžiai: drėgmės stresas, klasifikavimo medis, spektrinis atspindys, Zea mays. 
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